
Generating with Minimalist LanguagesFrancesco ZambleraAugust 28, 2011AbstractThis article describes a free implementation of Computational Min-imalist Grammar, and particularly the generator. The implementationis targeted to the subset of English and other languages known as theNatural Semantic Metalanguage.After an introduction on Computational Minimalist Grammars (sec-tion 1), which sketches the particularities of this implementation, section 2shows how the generator works, while section 3 discusses the use of featurevariables in PF.1 IntroductionThis paper presents an implementation of Computational Minimalist Gram-mars, written in Python and freely available on the web. The program is partof a project directed to build automatic translators for the Natural SemanticMetalanguage, which I am developing in collaboration with Cli� Goddard andAnna Wierzbicka.1By �Computational Minimalist Grammars� I refer to the computational ver-sion of Chomsky's Minimalist Program developed by Edward Stabler (see e.g.Stabler, 1997, 2011b,a). For computational purposes, I have taken as my pointof depart Harkema's PhD dissertation (Harkema, 2001), which is based on Sta-bler's 1997 model.The program implements a parser, a generator and a translator, which issimply obtained by piping the LF output by the parser into the generator.This article describes my particular implementation of Stabler's MinimalistGrammars using a restricted lexicon. A preliminary account of the English NSMin this particular framework is given in Zamblera (Forthcoming).In this paper, I will focus mainly on the generator, as the parser is basicallyan implementation of Harkema's CKY bottom-up parser (see Harkema, 2001,chapter 4).1Information and literature for Natural Semantic Metalanguage (NSM) canbe found at the website http://www.une.edu.au/bcss/linguistics/nsm/, of theUniversity of New England, where a link to this program can be found(http://www.une.edu.au/bcss/linguistics/nsm/translator.php).1

1.1 Features of the ImplementationMy implementation works bottom-to-top, standing very close to the �tradi-tional� de�nition of merge and move, both in parsing and in generating. Theshortcomings of such an approach for performance models have been highlightedby Chesi (2004, 2007), who proposes an alternative top-down strategy. In thiswork I try to overcome the problems of a bottom-to-top approach by translatingthe dominance relations discovered by the �Cartographic approach� 2 into �levelnumbers� which are added to the base features:
• All the functional heads which belong, for example, to the nominal ex-tended projection have the base feature n, as in Chesi (2004), but with anadded level number (n:1, n:2, and so on).Crucially, merge is allowed when the numerical index of the selector isgreater or equal than the one of the base. So, a selector like =n:2 canmerge with a n:1 or a n:2 base (but not with any n:k where k ≥ 3).In this way:� We can directly represent the hierarchy of functional heads by givingprogressive number, starting from the bottom of the hierarchy: so,for example, given the �nal part of Scott's hierarchy in the nounphrase (Scott, 2002, p. 114):. . .> COLOR > NATIONALITY/ORIGIN > MATERIAL > COM-POUND ELEMENT > NPwe can represent the noun head base feature as n:1, the functionalhead which hosts the �compound element� modi�er will be n:2, thehead of �MaterialP�, n:3, and so on, up to the determiner.3We will let a selector like =n, without level numbers, merge with n:kfor any k. So, the selector feature of the determiner will be simply=n.� This representation also expresses the fact that functional heads be-long to the same extended projection: so, nominal functional headswill all have the base feature ni, while verbal ones will be vi.� We can account for the optionality of adverbial modi�ers: so, forexample, the derivation of �(Probably) (suddenly) Napoleon died�,discussed in Chesi (2004, 138-40), and Chesi (2007, 55-56) where thetwo optional adverbs are problematic, can be obtained given a (verysimpli�ed) lexicon as:[N Napoleon], [N = V1 die], [=V1 V2 suddenly], [=V2 V3 -ed], [=V3 V4probably], [=V C].The complementizer C will be able to merge with any of the Vi, thusallowing the adverbials to be optional.2Cf. Belletti (2004); Cinque (1999, 2002, 2006); Rizzi (1997, 2004).3In the following discussion, cat:number will be alternatively represented as catnumber .2

Other than by the use of level numbers, the hierarchies discovered by thecartographic studies are re�ected in LF:
• I adopt a simple predicate-argument structure for LF and, crucially, el-ements which occur higher in the hierarchy act as predicates taking thelower structure as their argument.Another important addition to Stabler's model is the use of variable-sharing between syntactic features and PF representation:
• PF representations can contain variables which are crucially shared withsyntactic features. These variables are instantiated by feature-checking inthe usual probe-goal relation (cf. Chomsky, 2001, 2005; Hornstein et al. ,2005, p. 317 �.). In this way, features can be erased from syntax whenchecked, but their PF e�ects remain visible for the PF interface.For example, the morphonological entry which covers the Spanish formsbueno, buena, buenos, buenas is buen-gen-num, where gen andnum are variables.4 Among the syntactic features (which are those to bechecked by movement operations), there will be something as −fgender :

gen and−fnumber : num. Amove operation triggered by a noun with,for example, +fgender : F and +fnum : P will assign the right gender andnumber values, so that buen-gen-num becomes buen-F-P. This willbe converted into buenas by morpho-phonetic rules.5 This use of featuresis described more fully in section 3.6The minimalist grammar here developed uses feature-checking as a mor-phological device to instantiate e.g. agreement, much in the way as featureuni�cation is used in other computational models.
• the problem of persistent features is solved simply by putting the samefeature twice, once as a licensor and then as a licensee (see section 3.1). Forexample, in the Spanish noun phrase estas personas buenas, gender andnumber features may still be checked when the nuon phrase is integratedin a higher structure, e.g. estas personas son buenas. Let's therefore saythat, simplifying, the determiner has the following feature structure:

=n +fgender : gen +fnumber : num

d −fgender : gen −fnumber : num
(1)4Variables have the same name of the feature surrounded by $. If two di�erent variablesshould be needed with the same name, numerical indices are added. So, for example, $gen1$,

$gen2$. This operation is done automatically by the program when variables need renaming(see section 3.2).5The process here described refers to the generation process. In parsing, the algorithmstarts, of course, with an already instantiated form, as for example buenas. morpho-phoneticrules will change it into buen-F-P, with features −fgender : F and−fnumber : P . A movementoperation will check these features against those of the nominal head.6Cf. ?, p. 226, note 13: �Morphological agreement phenomena involve feature copying inPF�. 3

Crucially, the same variables gen and num are shared among the rel-evant licensors and licensees. Let the feature structure of the phrase per-sonas buenas be the following:
n :2 −fgender : fem −fnumber : pl (2)First, Merge({estas},{personas buenas}) will apply, erasing the selector=n from the determiner and the base n:2 from personas buenas. Then,two instances of move will check �rst +fgender and then+fnumber of thedeterminer against the relevant features of the noun phrase. Checkingwill instantiate the variables gen and num. After these operations,the feature structure of the determiner will be:
d −fgender : fem −fnumber : pl (3)In this way, we get the e�ect of persistent features without any machinerysuch as optional deleting, argued against by Chesi (2004).

• I have adopted a reverse-Polish notation for LF, which allows for a verysimple bottom-up building of LF (in the parser) and bottom-up processingof LF (in the generator).For example, let the LF of the sentence �this person moves� be somethinglike this:7
DECL(PRESENT (MOV E(THIS(PERSON)))) (4)In reverse-Polish notation, this becomes
PERSON THIS MOVE PRESENT DECL (5)Here is how a traditional predicate-argument structure becomes in reverse-Polish notation:Arity Structure Notation0 arg arg1 pred(arg) arg1 pred2 pred(arg1, arg2) arg1 arg2 pred3 pred(arg1, arg2, arg3) arg1 arg2 arg3 pred7The LF, output of the parsing process and input of the generator, is a very simplepredicate-argument scructure. 4

Some examples of nested structures:Structure Notation
pred1(arg1, pred2(arg2)) arg1 arg2 pred2 pred1

pred1(arg1, arg2, pred2(arg3, arg4)) arg1 arg2 arg3 arg4 pred2 pred1

pred1(arg1, pred2(pred3(arg2, arg3)) arg1 arg2 arg3 pred3 pred2 pred1After this cursory survey of the main characteristics of this implementation,the next section will brie�y review Stabler's model of minimalist grammars.1.2 Minimalist GrammarsAs in categorial grammars (see e.g. Steedman, 2000), a minimalist grammarconsists mainly of a lexicon; syntactic constructions are generated by the com-binatorial properties of lexical items,8 together with the two structure-buildingoperations merge and move. These operation are triggered exclusively by thesyntactic features of the lexical items.A lexical item is essentially a bundle of features. Each item has three typesof features:syntactic features, which determine the morphosyntactic properties of the lex-ical item, and trigger the two operations of merge and move. For example,a transitive verb like read has the categorial feature v, and the selectionfeature =d, meaning that it will merge with a DP in a head-complementstructure. An in�ection head like -s will have among its features =v, so itwill merge with a verb to form a structure [ii v];phonetic (PF) features, represented by a string of characters. I prefer to callthese features morpho-phononetic, because this implementation allowsfor �abstract� PF representations containing variables, which correspondto variables in the syntactic features.semantic (LF) features, which will be represented as an uppercase LF pred-icates. Merge operations compose semantic features, so that the LF ofthe head takes as its argument the LF of the merged item (complementor speci�er). As LF is in reverse-Polish notation, this means simply thatboth LFs are represented by strings, and LFhead is concatenated after
LFcompl.1.3 Syntactic featuresThere are four kinds of syntactic features, grouped in two sets:98The program here developed adds a morpho-phonetic rule component.9In section 4, some possible re�nements of this architecture are brie�y discussed, whichtake into consideration more recent proposals.5

1. Categorial featuresbase features like v, a, n. Each lexical item has one and only one catego-rial feature;selectors like =v, =a, =n. An item with selector = f can merge with anitem whose categorial feature is f . Both f and =f are deleted aftermerge. Furthermore, in my implementation, an item with selector
=fi can merge with an item whose base is base fj , if i ≥ j, or withan item whose base is f , for any i. Again, both fj and = fi aredeleted after merge. If an item has more than one selector, the �rstone will trigger merge with a complement, all the others will selectspeci�ers.2. Movement-related featureslicensors represented as +f (or, in my implementation, also as +f:val),together withlicensees trigger the move operation. An item with +f on the top ofthe tree will attract an item lower in the syntactic tree, whose �rstfeature is−f , if there is no other subtree with the feature−f (shortestmove constraint). In my implementation, an item with +f:val1 onthe top of the tree attract an item lower in the syntactic tree, whose�rst feature is -f:val2, if val1 can be matched with val2. In thatcase, move applies and the two features are deleted. Each of the twovalues can be a variable or an actual value (for example, if the featureis fgender , values could be masc, fem, or a variable $gender$).10To check the feature val1 against val2, the following procedure is applied:

• if neither val1 nor val2 are variables, they match only if they areidentical (so e.g. −fgender : masc matches +fgender : masc but not
−fgender : fem);

• if both are variables, they are uni�ed: after move, val1 = val2, andwhen either will be assigned a value (by later movement operations),the other will automatically assume the same value;
• either one of val1, val2 is a variable and the other an actual value,the variable is assigned that value. So e.g. +fgender : gen and
−fgender : masc match, and the variable gen is assigned the value
masc.When a variable is assigned a value, all instances of that variable in themorphophonological and morphosyntactic features will be assigned that value,as we have seen before in the brief discussion of Spanish adjective gender agree-ment. In this way, even if the two features get deleted by move, their values canpersist if there are other instances of that variable.10The program requires that possible values for each feature be declared in advance. In thisway, ther parser can go back, for example, from buen-F-P to buen-gen-num.6

1.4 The LexiconThe program implements a lexicon as a Python dictionary11, using the LFrepresentation as key, and a list of strings as value. The �rst item of the listrepresents the PF, and all the following items are the morphological features.An entry looks like this:
LF : [PF, f1, f2, ...] (6)Of the syntactic features f1, f2, . . . , only the �rst of the list is active (thatis, it can trigger some operation).12 For example, consider the item:
LF1 : [PF1, =f1, +f2 : val2, f3,−f4 : val4] (7)which can be taken directly from the lexicon, or be the e�ect of previousderivations. The only possible operation for this item is a merge with someitem of the form:
LF2 : [PF2, f1, . . .] (8)If merge applies, the top feature will be deleted, and our �rst item becomes:
LF1 + LF2 : [PF1, +f2 : val2, f3,−f4 : val4] (9)Now the active syntactic feature is +f2 : val2, so the item can only attract amovement candidate, whose �rst morphological feature is −f2 : valj , where valjmust match val2 in the sense de�ned above. After movement, +f2 : val2 willbe deleted, and f3 will become the active feature, and so on, until all syntacticfeatures have been deleted.1.5 A Sample DerivationLet us now see how the machinery described above works in the actual derivationof a simple sentence, Titus praises Lavinia.13The derivation begins by selecting the lexical items with which the structurewill be built. This set of selected items constitues a numeration. Figure 1 repre-sents the numeration for the sentence Titus praises Lavinia (LF representationsare boxed, PF are in italics. ε represent an empty category, that is, an itemwith null PF.).11A dictionary in the programming language Python is essentially a list of ordered pairs<key,value>.12It is the �edge feature� of Chomsky (2005, 6).13The example is taken from (Harkema, 2001, 31-35), cf. also Stabler (1997). I have onlyadded the LF representations. 7

Figure 1: Sample Numerationn -kLAVINIA
lavinia

, n -kTITUS
titus

, =n vt -vPRAISE
praise

, =vt +k =n predPRED
ε

,
=pred +v +k iINFL

−sThe derivation process selects an item at a time from the numeration, andadds it to the structure built so far, applying merge, then tries to apply moveif possible.We start by selecting items 1 and 3 and merging:
>LAVINIA1 PRAISE2

a
aa

!
!!-k

[]1
lavinia

-v
[]2

praiseafter merge, the categorial features n and =n disappear. The tree is headedby the arrow > pointing to the head of the tree. (in a more traditional GBnotation, this tree would look asV
b

b
"

"Nlavinia Vpraiseor, with bar levels,	V
b

b
"

"Nlavinia Vpraise 8

I adopt here the notation used in Harkema's and Stabler's works).Note how the merge concatenates immediately the two LFs.14In the next step, the fourth item is selected and merged with the tree builtso far. The result is:
<LAVINIA1 PRAISE2 PRED3
XXXXX

�����+k =n pred[]3
ε

>
a

aa
!

!!-k
[]1

lavinia

-v
[]2

praiseThe head of the construction is now the phonetically empty pred. Now amove operation is possible: the head of the tree has a feature k to check, andthe noun lavinia has the corresponding feature to be checked (+k and -k areboxed in the above tree). After movement, the tree becomes
>LAVINIA1 PRAISE2 PRED3

PPPP

����
laviniai <

a
a

aa
!

!
!!=n pred[]3
ε

>
b

bb
"

""
[]1
ti

-v
[]2

praiseIn the next step, the lexical item titus is picked out from the numerationand merged:14Move has no e�ect on LF representation in this framework. This is a peculiarity of myimplementation, whose consequences will have to be tested on larger samples of English thanNSM.
9

>TITUS4 LAVINIA1 PRAISE2 PRED3

PPPPP

�����-k[]4
titus

>
PPPP

����

laviniai <
a

aa
!

!!pred[]3
ε

>
b

bb
"

""
[]1
ti

-v
[]2

praiseThe head of the tree is the pred item (note how it is the only categorial featurepresent in the tree; hte other have been discharged after a successful merge).There remains item [i −s] to be selected, and merged with the structure:
>TITUS4 LAVINIA1 PRAISE2 PRED3 INFL5
XXXXX

�����+v +k i
[]5
−s

>
PPPPP

�����-k[]4
titus

>
PPPP

����

laviniai <
a

aa
!

!![]3
ε

>
b

bb
"

""
[]1
ti

-v
[]2

praiseThe head i has still two features to check: +v, boxed in the above tree, and+k. These features are checked by the two last applications of move:
10

>TITUS4 LAVINIA1 PRAISE2 PRED3 INFL5
XXXXX

�����
[]2

praisej
<
PPPPP

�����+k i
[]5
−s

>
PPPP

����-k[]4
titus

>
PPPP

����

laviniai <
H

HH
�

��[]3
ε

>
Z

Z
�

�
[]1
ti

[]2
tj

>TITUS4 LAVINIA1 PRAISE2 PRED3 INFL5
XXXXX

�����[]4
titusk

>
PPPP

����
[]2

praisej
<
a

a
aa

!
!

!!i
[]5
−s

>
PPPP

����

tk >
PPPP

����

laviniai <
H

HH
�

��[]3
ε

>
Z

Z
�

�
[]1
ti

[]2
tjThe �nal LF is equivalent to:

INFL(PRED(PRAISE(LAV INIA), T ITUS)) (10)and the PF is titus praise -s lavinia.11

1.6 Competence and Performance15The derivation sketched above is an example of how minimalist grammars canmodel the speaker's competence. As Chomsky has always made clear, fromthe very beginning (e.g. Chomsky, 1957, 1965), a generative grammar is notinvolved in the production of speci�c sentences, but is to be understood as acomputational device which generates, in the mathematical sense, the gram-matical sentences of a language, assigning them a structural description.A generator and a parser, on the other hand, produce and, respectively,analyse particular sentences. A generator produces a sentence starting from aspeci�ed LF, while a parser goes the opposite way, from PF to LF. Being so,a generator-parser can be thought of as a model of a speaker-hearer's perfor-mance.16So the term generate means two di�erent things:
• In the Chomskian competence-oriented sense, generate means enumerateall and only the grammatical sentences which can be derived by a gram-mar;
• In computational linguistics, to generate a sentence means to produce aspeci�c sentence.Given the enumeration above, the computational device can generate (in the�rst sense), beyond the sentence �Titus praises Lavinia�, also �Lavinia praisesTitus�, by merging �praise� with �Titus� instead of �Lavinia� in complementposition.If we add to the numeration the following item:=pred +v +k iINFL

−dwe can also generate �Titus praised Lavinia� and �Lavinia praised Titus�.And so on.We can summarize the di�erence between competence and performance asin table 1.6.The model of competence exempli�ed by the above derivation is similar tothe one proposed in Hornstein et al. (2005), from which I take (pag. 328)�gure 1.6, slightly adapted:1715An illuminating discussion on this issue can be found in Chesi (2007).16This is true, of course, only to the extent that a generator-parser is not built simply asa computational device, but can claim to be models of the human generation and parsingprocesses.17�Select� refers to selection of items from the numeration, while move is analyzed as acombination of two elementary operations, copy, which copies an item from a lower positionin the tree, and merge. 12

Table 1: competence and PerformanceCompetence PerformanceParsing GenerationStarting point Numeration PF LFResult All possible pairs {PF,LF} LF PFFigure 2: a model of Minimalist Grammar
Numeration

Select&Merge&Copy

��
LF

Spell−Out
// PFThe main di�erence concerns the spell-out operation. In my implementation(as in Stabler (1997) and Harkema (2001), if I understand them correctly, aswell as Chomsky (2005, p. 9)), LF is not mapped unto PF by a (single) spell-outoperation; instead, LF and PF are built in parallel: each application of mergeand move operates on all the three kinds of features (syntactic, semantic andmorpho-phonetic) at the same time. In particular:

• syntactic features are matched and deleted by both merge and move;
• PFs are concatenated, again by both merge and move, provided the rele-vant items will not move further. This could be seen as a particular formof spell-out happening at each step in a derivation. A similar model is pro-posed in Wojdak (2005), and exempli�ed with extensive documentationfrom the Wakashan language Nuu-chah-nulth;
• in my implementation, merge (alone) also composes LFs.This is not yet the whole story, however, because in my implementation PFand LF, once built, still have to undergo some transformation, in the form ofPF-rules and LF-rules respectively. PF- and LF-rules are implemented as acascade of regular expressions.1.7 PF- and LF-rulesThe use of variables and features in PFs produce �abstract� PFs, which will haveto be instantiated by PF-rules. For example, in the Spanish fragment that wewill consider in section 3, the syntactic component produces PFs like est-F-Pdos persona-P, which will have to be turned into estas dos personas.As for LF-rules, their need is felt at once when we try to build a translator.I give an example of a problem I faced in building the English and Tok Pisin13

modules for the NSM translator: one �canonical sentence� of NSM is �I feelsomething bad�. To express this in Tok Pisin, we have to say bel bilong mi nogut,literally �my stomach is bad�. The Tok Pisin parser produces a �super�cial� LFof the kind BAD(STOMACH(ME)), which is then turned into a �deep� LF likeFEEL_BAD(ME).The Tok Pisin generator works in reverse: suppose it is fed with the outputof the parsing of the English NSM sentence �I feel something bad,� which willbe something like FEEL_BAD(ME). Before the derivation process starts, this LFwill have to be �translated� into BAD(STOMACH(ME)).Summarising, the Tok Pisin equivalent of �I feel something bad� is processedalong the schema shown in �gure 3 (to be read bottom-up for parsing and top-down for generation).18Figure 3: Performance model of bel bilong mi nogutME FEEL_BAD1 LF-rulesME STOMACH BAD2 scan & merge & movebel bilong mi nogut3 PF-rulesbel bilong mi nogutIf we look at the derivation of this sentence from a competence point of view,we could represent it like in �gure 4.We can think of such PF- and LF-rules as not, strictly speaking, part ofsyntax, but belonging already to the interface levels.Putting all together, we obtain the following model of competence shown in�gure 1.7.to which corresponds the performance model shown in �gure 1.7 (again,a top-down reading represents generation and a bottom-up reading representsparsing).In the next section, we will look again at the derivation process, this timefrom the performance angle: in particular, we will see how the generator, givena speci�ed LF, works out the corresponding LF. The parser, which will notdescribed here, goes the opposite way.18Cf. again ?, pag. 226: �Much as there are phonological operations that apply exclusivelyfor interface internal reasons there are numerous and powerful semantic processes that cannotand should not be reduced to syntax�. 14

Figure 4: Competence model of bel bilong mi nogutNumerationPF : bel bilong mi nogutLF : ME STOMACH BAD
XXXXX

�����Final PFbel bilong mi nogut Final LFME FEEL_BADFigure 5: A model of Minimalist Grammar. �nal PF
Numeration

merge&move
// IntermediatePF&LF

LFrules
55lllllllllllll

PFrules))RRRRRRRRRRRRR �nal LF
Figure 6: Generation and Parsing. Universal LFLF-rulesLanguage-particular LFmerge & moveAbstract PFPF-rules�nal PF 15

Figure 7: A Sample Lexiconlexicon = {'LAVINIA' : ['lavinia', 'n', '-k'],'TITUS' : ['titus', 'n', '-k'],'PRAISE' : ['praise', '=n', 'vt', '-v'],'PRED' : ['', '=vt', '+k', '=n', 'pred'],'INFL' : ['s', '=pred', '+v', '+k', 'i']}2 GenerationA Minimalist Grammar consists mainly of a lexicon, represented as a Pythondictionary. For our example, we shall take the very restricted lexicon of �gure 2.2.1 Running the generatorBy running the generator in verbose mode, we get a trace of the generationprocess.After having loaded the dictionary, and selected it as L2, we feed the gener-ator with the input LF:TITUS LAVINIA PRAISE PRED INFL DECL2.2 The Generation ProcessThe generator works in a bottom-up shift-reduce fashion. While there are itemson the list:1. scan:(a) remove the �rst LF item from the list;(b) lookup its features in the dictionary, using LF as key, obtaining aminimal tree;(c) push the obtained minimal tere on the stack.2. merge, move: Once a new item has been shifted on the top of thestack, succesive merge and move are attempted until no more operationis possible:(a) While the top item's �rst feature is = fi and the item immediatelyunder it has fi as its �rst feature:i. pop the two items from the stack;ii. apply mergeiii. push the new formed item on the stack;16

(b) Then, try to repeatedly apply move to the top item.(c) And �nally, if the top item's �rst feature is = fi, repeat from point2.a above.(d) If there are LF items left, return to 1.(e) When the LF string is exhausted, the top of the stack should containthe generated string, with its base feature.2.3 Tracing the Algorithm2.3.1 ScanThe �rst two operations will always be a scan, because a merge requires at leasttwo items on the stack.---------------------------1 SCAN-- pf: titus-- lf: TITUS-- f: ['::', 'n', '-k']-- stack : []---------------------------2 SCAN-- pf: lavinia-- lf: LAVINIA-- f: ['::', 'n', '-k']-- stack : TITUS [n ...];---------------------------The tracing shows the stack before the scanned item is pushed. So, at the�rst scan, the stack is empty; when LAVINIA is scanned, the stack contains theminimal tree for TITUS.No merge is possible, so another scan follows:---------------------------3 SCAN-- pf: praise-- lf: PRAISE-- f: ['::', '=n', 'vt', '-v']-- stack : TITUS [n ...]; LAVINIA [n ...];---------------------------2.3.2 MergeAs PRAISE is scanned, a merge is possible: PRAISE has = n as its �rstfeatures, and the element just �under� it on the stack has n as its categorialfeatures. 17

n -kLAVINIA
lavinia

=n vt -vPRAISE
praiseMerging the two, we get the following tree:

>LAVINIA1 PRAISE2

a
aa

!
!!-k

[]1
lavinia

-v
[]2

praiseWhen the generator performs a merge,1. the categorial and selector features which have triggered the merge oper-ation are deleted;2. the LF of the selector, which is the head of the construction, is su�xedto the string representing the LF of the selected item (complement orspeci�er);193. As for the PF, two cases must be distinguished:(a) If the selected item does not have licensee features, it will not movefurther. So, its PF can be concatenated to the PF of the head.20(b) If, however, the selected item does have licensee features, its PF can-not still be concatenated to the PF of the head, because the selecteditem will move when its licensee featuer will be attracted by a corre-sponding licensor feature. This licensor could come into the structureat any later point.21In the sentence we are generating, we cannot concatenate the PFs, becausethe item LAV INIA has a −k feature to be licensed. The tree is, as it were,�split� by the −k feature:19As LF is represented in reverse-Polish notation, su�xing the LF of the head means thatthe LF of the head is a predicate which takes the LF of the selected item as its argument.As for the di�erence between complement and speci�er, cfr Harkema (2001).20Complements and speci�ers21This is merge 3 of Harkema (2001, p. 86) and Stabler (1997).
18

#1 >LAVINIA1 PRAISE2

a
aa

!
!!#2-k

[]1
lavinia

-v
[]2

praiseThe tracing facility of the program represents it as follows:---------------------------4 MERGE-- lf: LAVINIA PRAISE#1 -- pf: 'praise'-- f: [':', 'vt', '-v']----------#2 -- pf: 'lavinia'-- f: [':', '-k']---------------------------At this point, the generator cannot apply move, because the top feature onthe stack is a categorial one (vt). So, it goes on to scan the next item:5 SCAN-- pf:-- lf: PRED-- f: ['::', '=vt', '+k', '=n', 'pred']-- stack : TITUS [n ...]; LAVINIA PRAISE [vt ...];---------------------------The two topmost items on the stack are now=vt +k =n predPRED
ε

, and #1 >LAVINIA1 PRAISE2

a
aa

!
!!#2-k

[]1
lavinia

-v
[]2

praiseThese items can be merged and, again, the PFs cannot be concatenated yet,because of the −k features: 19

6 MERGE-- lf: LAVINIA PRAISE PRED#1 -- pf: ''-- f: [':', '+k', '=n', 'pred']----------#2 -- pf: 'praise'-- f: [':', '-v']----------#3 -- pf: 'lavinia'-- f: [':', '-k']---------------------------2.3.3 MoveThe above trace represents the tree:
<LAVINIA1 PRAISE2 PRED3
XXXXX

�����

#1 +k =n pred[]3
ε

>
a

aa
!

!!

#3 -k
[]1

lavinia

#2 -v
[]2

praiseAfter having performed merge, the generator tries to apply move, and thistime succeeds. The item −k lavinia is fronted and its licensee feature is deleted.The phonetic form lavinia can be concatenated to the pred item triggeringmovement; however, as that item is phonetically null, no PF e�ect is seen:7 MOVE-- lf: LAVINIA PRAISE PRED#1 -- pf: 'lavinia '-- f: [':', '=n', 'pred']----------#2 -- pf: 'praise'-- f: [':', '-v']---------------------------After deleting +k feature from the head, the new topmost feature is another
=n selector. The next item on the stack is n−k titus, therefore a new merge ispossible. Again, the −k feature in titus prevents the PFs from concatenating:20

8 MERGE-- lf: TITUS LAVINIA PRAISE PRED#1 -- pf: 'lavinia '-- f: [':', 'pred']----------#2 -- pf: 'titus'-- f: [':', '-k']----------#3 -- pf: 'praise'-- f: [':', '-v']---------------------------At this point, the topmost feature on the stack is the selector pred. Thenext move wil therefore be a scan:9 SCAN-- pf: s-- lf: INFL-- f: ['::', '=pred', '+v', '+k', 'i', '-f']-- stack : TITUS LAVINIA PRAISE PRED [pred ...];---------------------------The topmost feature =pred triggers merge:10 MERGE-- lf: TITUS LAVINIA PRAISE PRED INFL#1 -- pf: 's lavinia '-- f: [':', '+v', '+k', 'i', '-f']----------#2 -- pf: 'titus'-- f: [':', '-k']----------#3 -- pf: 'praise'-- f: [':', '-v']---------------------------In the next step, the verb moves to (Spec,INFL) to check its −v feature; thenthe subject noun titus moves to (Spec,INFL) too, to check case.In the �rst instance of move, the PF of the verb praise is concatenated tothe left of the INFL head −s, because it does not have any more licensees, so itwill not move further:11 MOVE-- lf: TITUS LAVINIA PRAISE PRED INFL#1 -- pf: 'praise s lavinia ' 21

-- f: [':', '+k', 'i', '-f']----------#2 -- pf: 'titus'-- f: [':', '-k']---------------------------The same happens to titus in the second instance of move:12 MOVE-- lf: TITUS LAVINIA PRAISE PRED INFL#1 -- pf: 'titus praise s lavinia '-- f: [':', 'i', '-f']---------------------------The last item is now pushed onto the stack:13 SCAN-- pf: .-- lf: DECL-- f: ['::', '=i', '+f', 'c']-- stack : TITUS LAVINIA PRAISE PRED INFL [i ...];---------------------------There remain two �nal merge and move:14 MERGE-- lf: TITUS LAVINIA PRAISE PRED INFL DECL#1 -- pf: '.'-- f: [':', '+f', 'c']----------#2 -- pf: 'titus praise s lavinia '-- f: [':', '-f']---------------------------15 MOVE-- lf: TITUS LAVINIA PRAISE PRED INFL DECL#1 -- pf: 'titus praise s lavinia .'-- f: [':', 'c']The generator stops, as no more items remain to be scanned. The stackcontains only one element, of category c. Note how the generator, in buildingthe PF, has also rebuilt the original LF.22

Figure 8: A Sample Spanish Lexiconlexicon = {'PERSON' : ['persona-num', 'n:1', '-gen:F', '-num:num'],'GOOD' : ['buen-gen-num','=n:1', '+gen:gen', '+num:num','n:2', '-gen:gen', '-num:num'],'TWO' : ['dos','=n:2', '+gen:gen', '+num:P', '>','n:3', '-gen:gen', '-num:P'],'THIS' : ['est-gen-num','=n:5', '+gen:gen', '+num:num', '>','n:7', '-gen:gen', '-num:num']}3 Feature Values and InstantiationNow we will see how feature checking instantiates morphological agreement. Westart from the Spanish lexicon in �gure 3.22Some peculiarities:
• The symbol '>' after a licensor, which e�ects concatenation of the movedelement to the right of the PF of the licensor, instead of the default left-attachment);
• more importantly, the same variables used in licensors and licensees arepresent in the morpho-phonetic features.For example, the lexical entry PERSON is'PERSON' : ['persona-num', 'n:1', '-gen:F', '-num:num'],with the two licensees −gen and −num. In Spanish, persona has femininegender, so the value of the licensee −gen is F . As the value of the num(ber)feature, however, will depend on the context, it is represented here as a variable(num). When the number feature will be checked, this variable will get a valueand will pass that value to the morpho-phonetic representation persona-num.22To simplify matters, the adjective GOOD here takes directly the head noun as its com-plement. In a real grammar of Spanish, GOOD will have a base feature a, and will be selectedas a speci�er by a functional head like EvalP or SubjectCommentP, which will be part of theextended projection of the noun head (Scott, 2002; Cinque, 2009).23

3.1 Persistent FeaturesThe lexical entry for GOOD is:'GOOD' : ['buen-gen-num','=n:1', '+gen:gen', '+num:num','n:2', '-gen:gen', '-num:num'],�Good� is an adjective23, so both its gender and number will have to beinstantiated by agreement with the head noun. This entry exempli�es also thesolution I propose to �persistent features�, i.e. features which do not delete afterchecking, because they will have to �pass on� their values further.A subject noun phrase, for example, concords in number (and sometimesalso in gender) with the predicate (esta persona es buena vs. estos niños sonbuenos). But if these agreement features get deleted when they are checkedbetween the head noun and the attribute, they will be no more available.There is, however, a simple solution: we can simply put the same featuretwice in the lexical entries for adjectives, both as a licensor and a licensee. In theabove lexical entry for GOOD there are both +gen, +num, and −gen, −num,and, crucially, they share the same variable. As the adjective will check its
+gen :gen features against the −gen :F of a feminile noun, the variable genwill become F in all of its instances, and the item GOOD will become'GOOD' : ['buen-F-num', '+num:num','n:2', '-gen:F', '-num:num'],We will see this at work in the following trace. We want to generate theSpanish noun phrase esta persona, represented as THIS(PERSON) or, inreverse-Polish notation,PERSON THISThe generator will scan the �rst item and push onto the stack the resultingtree:---------------------------1 SCAN-- pf: persona-$num.1$-- lf: PERSON-- f: ['::', 'n:1', '-gen:F', '-num:$num.1$']-- stack : []---------------------------23Here its category is represented as n:2. A more realistic grammar will surely have thecategory a.

24

3.2 Variable RenamingNote how the variable num has been renamed as $num1$ ($num.1$). Whenan item is pushed onto the stack, all its variables are renamed to avoid con�ictswith other variables with the same name. For example, in generating the Span-ish esta persona hace muchas cosas, we do not want the subject NP to sharethe same num variable with the object.24.After the �rst item, the second is scanned:2 SCAN-- pf: est-$gen.2$-$num.3$-- lf: THIS-- f: ['::', '=n:5', '+gen:$gen.2$', '+num:$num.3$', '>','n:7', '-gen:$gen.2$', '-num:$num.3$']-- stack : PERSON [n:1 ...]---------------------------Note how the gender and number variable are renamed: We do not want thevariable of this item to end up accidentally called like the one in other items,but we do want that the three instances of gen present in one and the sameitem get the same name, and so the three instances of num, or the �feature-passing� mechanism described above will not work. And that is exactly what wehave: once GOOD is scanned, all its three num variables become $num3$,which is di�erent from the $num1$ of the previous item.25Returning to the sentence we are generating, now merge becomes possible:3 MERGE-- lf: PERSON THIS#1 -- pf: 'est-$gen.2$-$num.3$'-- f: [':', '+gen:$gen.2$', '+num:$num.3$', '>','n:7', '-gen:$gen.2$', '-num:$num.3$']----------#2 -- pf: 'persona-$num.1$'-- f: [':', '-gen:F', '-num:$num.1$']---------------------------As usual, the licensees in the complement prevent its phonetic features tobe concatenated with those of the head.Now, the -gen:F licensee will check against the +gen:$gen.2$ of the head.After checking, the two features -gen:F and +gen:$gen.2$ disappear, but thevariable $gen2$ will become F everywhere. So, after move, we have:24This renaming operation is an analogous of α-conversion in λ-calculus.25In this particular case, the two items will end up sharing the same value for these $numi$variables, but the generator procedure cannot know it at this stage! It is only after merge andmove will have applied that the two variable will eventually coincide.25

4 MOVE-- lf: PERSON THIS#1 -- pf: 'est-F-$num.3$'-- f: [':', '+num:$num.3$', '>','n:7', '-gen:F', '-num:$num.3$']----------#2 -- pf: 'persona-$num.1$'-- f: [':', '-num:$num.1$']---------------------------The −gen licensee of the adjective has got the value F , which will be availablefor later checking, when for example the noun phrase will be selected by apredicate. In this way, we have preserved the value of the feature, withoutintroducing any new machinery (e.g. the distinction between features whichdelete after checking and those which do not).At this point, +num:$num.3$ and check -num:$num.1$ will e�ect anothermove. Since both values are variable, the two variables will become one:5 MOVE-- lf: PERSON THIS#1 -- pf: 'est-F-$num.1$ persona-$num.1$'-- f: [':', 'n:7', '-gen:F', '-num:$num.1$']The generation process ends, producing the stringest-F-$num.1$ persona-$num.1$3.3 Default ValuesThe above string has an unstantiated variable $num1$. Using a standard min-imalist terminology, this would cause the derivation to crash at PF.To avoid this, uninstantiated variables get a default value before passingthrough PF-rules. Default values are declared in the grammar.For example, for the Spanish mini-grammar we are considering, we coulddeclare `masculine' and `singular' as the default values of, respectively, `gender'and `number'. The declaration looks like this in the Spanish �le:default = {'gen' : 'M', 'num' : 'S'}By applying the default values, the stringest-F-$num.1$ persona-$num.1$becomes: 26

est-F-S persona-SMorpho-phonetic rules then transform this into:esta persona3.4 Another example of generationLet us look at another example, generating the phrase estas dos personas. Theinitial LF isPERSON TWO THISand the process begins, as usual, with two scan operations:---------------------------1 SCAN-- pf: persona-$num.4$-- lf: PERSON-- f: ['::', 'n:1', '-gen:F', '-num:$num.4$']-- stack : []---------------------------2 SCAN-- pf: dos-- lf: TWO-- f: ['::', '=n:2', '+gen:$gen.5$', '+num:P', '>','n:3', '-gen:$gen.5$', '-num:P']-- stack : PERSON [n:1 ...]---------------------------The item �two� triggers plural agreement in the head noun (by its licensor+num:P). This renders the whole noun phrase plural (thanks to the licensee-num:P).The numeral and the head noun are �rst merged:3 MERGE-- lf: PERSON TWO#1 -- pf: 'dos'-- f: [':', '+gen:$gen.5$', '+num:P', '>','n:3', '-gen:$gen.5$', '-num:P']----------#2 -- pf: 'persona-$num.4$'-- f: [':', '-gen:F', '-num:$num.4$']--------------------------- 27

then, gender and number features are checked by two successive move oper-ations:4 MOVE-- lf: PERSON TWO#1 -- pf: 'dos'-- f: [':', '+num:P', '>', 'n:3', '-gen:F', '-num:P']----------#2 -- pf: 'persona-$num.4$'-- f: [':', '-num:$num.4$']---------------------------5 MOVE-- lf: PERSON TWO#1 -- pf: 'dos persona-P'-- f: [':', 'n:3', '-gen:F', '-num:P']---------------------------After this step, when the determiner is �rst scanned, then merged, the nounphrase under construction is already feminine and plural:6 SCAN-- pf: est-$gen.6$-$num.7$-- lf: THIS-- f: ['::', '=n:5', '+gen:$gen.6$', '+num:$num.7$', '>','n:7', '-gen:$gen.6$', '-num:$num.7$']-- stack : PERSON TWO [n:3 ...]---------------------------7 MERGE-- lf: PERSON TWO THIS#1 -- pf: 'est-$gen.6$-$num.7$'-- f: [':', '+gen:$gen.6$', '+num:$num.7$', '>','n:7', '-gen:$gen.6$', '-num:$num.7$']----------#2 -- pf: 'dos persona-P'-- f: [':', '-gen:F', '-num:P']---------------------------Now it's the turn of the determiner to check gender and number:8 MOVE-- lf: PERSON TWO THIS#1 -- pf: 'est-F-$num.7$'-- f: [':', '+num:$num.7$', '>',28

'n:7', '-gen:F', '-num:$num.7$']----------#2 -- pf: 'dos persona-P'-- f: [':', '-num:P']---------------------------9 MOVE-- lf: PERSON TWO THIS#1 -- pf: 'est-F-P dos persona-P'-- f: [':', 'n:7', '-gen:F', '-num:P']And we are done. Spell-out will derive the phonetic form:========= SPELL-OUT ===========> est-F-P dos personas----==> estas dos personas----4 ConclusionsThe generator described in the pesent article, together with the parser, hasbeen already �put to use� in automatic translation between English and TokPisin NSMs, with encouraging resultates. Much remains to do, of course.
• A �rst �minimalist� question imposes itself: there are no constraints onfeature composition of lexical item. We could envisage such improbable alexical items as:=v =v =v =v =n =n =n a PF LFjust as in early generative grammars it was possible to write base rules as:V --> NP + A.To make such rules impossible, X-bar theory was developed, as it is wellknown.In Zamblera (Forthcoming) I have attempted to advance some suggestionsabout how lexical representation could be constrained.
• Another important question concerns agreement: As noted in the litera-ture (Cf. e.g. Chesi, 2004, 2007; Sigurðsson, 2006), merge must involvefeatures agreement; especially Chesi's idea of merge as uni�cation is veryappealing from both a theoretical and a computational point of view.This idea can be readily implemented in this model if a select featureis immediately followed by all the licensees which represent the relevantagreeing features. 29

For example, suppose head a selects head b as its complement26 only ifthe two heads agree in features f1 and f2. The following lexical entriescapture exactly this situation:27
b −f1 −f2 . . . (11)and
=b +f1 +f2 > . . . a . . . (12)If a selects b as its speci�er, we will simply omit the > symbol from theabove representation, and move will adjoin the moved item to the left,yielding Spec ≺ Head linearization.By the way, it would be desirable to have a uniform move, which onlyleft-adjoins the goal to the probe28. In this case, we could keep the �rightadjoining� move only to simulate merge-triggered agreement in a head-complement con�guration. A head which selects both complement andspeci�er would thus have the following representation:
=Comp +agri +agrj > . . .

=Spec +agrx +agry . . .

Base . . .

(13)Finally, some plans/wishes for the future:
• Empirically adequate grammar modules should be written for a variety oflanguages, which can cover at least the NSM subset;
• A bottom-to-top parser builds tipically a lot of unnecessary structure, tobe later discarded. A worthwhile enterprise would be developing of a top-down parsing and generation algorithm, like that in Harkema (2001) orChesi (2004). The notion of phase could then be very useful; the presentimplementation, based on the �pre-phases� model of Stabler 1997, doesnot uses this concept;
• The grammar coverage could be extended to some larger subset than NSM;26In Stabler's model, as well as in my implementation, there is a simple linearization rule:complements are spelled out on the right of their heads, and speci�ers on the left.27Recall that the > symbol after a licensor e�ects the �right-adjoining� of the moved item.So, in this case, the resulting order is that of a simple merge.28As Stabler (2011b) has shown, allowing merge and move to specify the adjoining directiondoes not increase the generative power of the grammar anyway.30

• An interesting �variation on the minimalist theme� is represented by Brody'smirror theory,29, which has been formalized by Kobele (2002). Kobele'sformalization of Brody's �mirror theory� is very similar to Stabler's model.The Python program that I have developed contains a module which worksderivations using Mirror Theory, though I have not tested it yet. Develop-ing a Mirror Throretic Grammar for English NSM would be an interestingexercise;
• A question which is interesting also from a theoretical point of view: couldthere be variable-sharing among LF and syntactic features, as already PFhas? Though I have not used this feature in the English NSM grammar,the program could already allow it �for free�.Appendix: The programThe program has, so far, only a command-line interface. A grammar for theparser is loaded by issing the command l1 <filename>, while the commandl2 <filename> loads a grammar for the translator. After a grammar is loaded,the command t <sentence> translates a sentence from l1 to l2 (if no l2 isselected, the sentence is simply parsed and the LF is output. If no l1 is selected,the input must be a LF formula, and the output will be the l2 sentence generatedfrom that formula. For example, given the lexicon-grammar de�ned above inthe derivatrion of the sentence �Titus praises Lavinia� (section ??) contained inthe �le �svo.py�:>> l1 svo>> t titus praise s lavinia .TITUS LAVINIA PRAISE PRED INFL DECLis an example of parsing, while>> l2 svo>> t TITUS LAVINIA PRAISE PRED INFL DECLtitus praise s lavinia .is a sample generation.The command test is useful in developing new grammar. After the com-mand, the user can input sentences, which are �rst parsed. The LF thus ob-tained is fed back into the generator, and, if all goes well, the input sentenceshould be produiced again.>>>>> l1 svo>> v29Brody (2000). 31

>> test?- titus praise s lavinia .parse: TITUS LAVINIA PRAISE PRED INFL DECLgeneration: titus praise s lavinia .ReferencesBelletti, Adriana (ed). 2004. Structures and Beyond. The Cartography of Syn-tactic Structures, vol. 3. Oxford University Press.Boeckx, C. 2010. Oxford Handbook of Linguistic Minimalism. Oxford UniversityPress.Boeckx, Cedric (ed). 2006. Agreement Systems. Amsterdam, Philadelphia: JohnBenjamins.Brody, Michael. 2000. Mirror Theory: Syntactic Representation in Perfect Syn-tax. Linguistic Inquiry, 31, 29�56.Chesi, Cristiano. 2004. Phases and Cartography in Linguistic Computation.Toward a cognitively motivated computational model of linguistic competence.Ph.D. thesis, University of Siena.Chesi, Cristiano. 2007. An Introduction to Phase-based Minimalist Grammars:why move is Top-Down from Left-to-Right. STiL Studies in Linguistics, 1.Chomsky, Noam. 1957. Syntactic Structures. The Hague: Mouton.Chomsky, Noam. 1965. Aspects of the Theory of Syntax. Cambridge, MA: TheMIT Press.Chomsky, Noam. 2001. Derivation by Phase. In:Kenstowicz (2001). Pages 1�52.Chomsky, Noam. 2005. On Phases.Cinque, Guglielmo. 1999. Adverbs and functional heads: a cross-linguistic per-spective. Oxford University Press.Cinque, Guglielmo (ed). 2002. Functional structure in DP and IP. The Cartog-raphy of Syntactic Structures, vol. 1. Oxford University Press.Cinque, Guglielmo (ed). 2006. Restructuring and functional heads. The Cartog-raphy of Syntactic Structures, vol. 4. Oxford University Press.Cinque, Guglielmo. 2009. The Syntax of Adjectives. A Comparative study. TheMIT Press.Haegeman, Liliane (ed). 1997. Elements of Grammar. Dordrecht: Kluwer Pub-lications. 32

Harkema, Hendrik. 2001. Parsing Minimalist Languages. Ph.D. thesis, Univer-sity of Califrnia, Los Angeles.Hornstein, Norbert, Nunes, Jairo, & Grohmann, Kleanthes K. 2005. Under-standing Minimalism. Cambridge Textbooks in Linguistics. Cambridge Uni-versity Press.Kenstowicz, M. (ed). 2001. Ken Hale: A life in language. Cambridge MA: MITPress.Kobele, Gregory. 2002. Formalizing Mirror Theory. Grammars, 5(3), 177�221.Retoré, C. (ed). 1997. Logical Aspects of Computational Linguistics. Springer.Rizzi, Luigi. 1997. The Fine Structure of the Left Periphery.Rizzi, Luigi (ed). 2004. The Structure of CP and IP. The Cartography ofSyntactic Structures, vol. 2. Oxford University Press.Scott, Gary-John. 2002. Stacked Adjectival Modi�cation and the Structure ofNominal Phrases. Vol. 1 of Cinque (2002). Pages 91�120.Sigurðsson, Halldór. 2006.Stabler, Edward. 1997. Derivational Minimalism. In:Retoré (1997). Pages68�95.Stabler, Edward. 2011a. Computational Minimalism. Acquiring & Parsing Lan-guages With Movement. John Wiley & Sons Inc.Stabler, Edward. 2011b. Computational perspectives on minimalism. Pages616�641.Steedman, Mark. 2000. The Syntactic Process. MIT Press.Wojdak, Rachel. 2005. The Linearization of A�xes: Evidence from Nuu-chah-nulth. Ph.D. thesis, The University of British Columbia.Zamblera, Francesco. Forthcoming. NSM meets Minimalism. A PreliminaryMinimalist Grammar of the English Semantic Metalanguage.

33

