Generating with Minimalist Languages

Francesco Zamblera

August 28, 2011

Abstract

This article describes a free implementation of Computational Min-
imalist Grammar, and particularly the generator. The implementation
is targeted to the subset of English and other languages known as the
Natural Semantic Metalanguage.

After an introduction on Computational Minimalist Grammars (sec-
tion 1), which sketches the particularities of this implementation, section 2
shows how the generator works, while section 3 discusses the use of feature
variables in PF.

1 Introduction

This paper presents an implementation of Computational Minimalist Gram-
mars, written in Python and freely available on the web. The program is part
of a project directed to build automatic translators for the Natural Semantic
Metalanguage, which I am developing in collaboration with Cliff Goddard and
Anna Wierzbicka.!

By “Computational Minimalist Grammars” I refer to the computational ver-
sion of Chomsky’s Minimalist Program developed by Edward Stabler (see e.g.
Stabler, 1997, 2011b,a). For computational purposes, I have taken as my point
of depart Harkema’s PhD dissertation (Harkema, 2001), which is based on Sta-
bler’s 1997 model.

The program implements a parser, a generator and a translator, which is
simply obtained by piping the LF output by the parser into the generator.

This article describes my particular implementation of Stabler’s Minimalist
Grammars using a restricted lexicon. A preliminary account of the English NSM
in this particular framework is given in Zamblera (Forthcoming).

In this paper, I will focus mainly on the generator, as the parser is basically
an implementation of Harkema’s CKY bottom-up parser (see Harkema, 2001,
chapter 4).

!Information and literature for Natural Semantic Metalanguage (NSM) can
be found at the website http://www.une.edu.au/bcss/linguistics/nsm/, of the
University of New England, where a link to this program can be found
(http://www.une.edu.au/bcss/linguistics/nsm/translator.php).

1.1 Features of the Implementation

My implementation works bottom-to-top, standing very close to the “tradi-
tional” definition of merge and mowve, both in parsing and in generating. The
shortcomings of such an approach for performance models have been highlighted
by Chesi (2004, 2007), who proposes an alternative top-down strategy. In this
work I try to overcome the problems of a bottom-to-top approach by translating
the dominance relations discovered by the “Cartographic approach” 2 into “level
numbers” which are added to the base features:

e All the functional heads which belong, for example, to the nominal ex-
tended projection have the base feature n, as in Chesi (2004), but with an
added level number (n:1, n:2, and so on).

Crucially, merge is allowed when the numerical index of the selector is
greater or equal than the one of the base. So, a selector like =n:2 can
merge with an:1 or a n:2 base (but not with any n:k where k£ > 3).

In this way:

— We can directly represent the hierarchy of functional heads by giving
progressive number, starting from the bottom of the hierarchy: so,
for example, given the final part of Scott’s hierarchy in the noun
phrase (Scott, 2002, p. 114):

...> COLOR > NATIONALITY/ORIGIN > MATERIAL > COM-
POUND ELEMENT > NP

we can represent the noun head base feature as n:1, the functional
head which hosts the “compound element” modifier will be n:2, the
head of “MaterialP”, n: 3, and so on, up to the determiner.?

We will let a selector like =n, without level numbers, merge with n:k
for any k. So, the selector feature of the determiner will be simply
=n.

— This representation also expresses the fact that functional heads be-
long to the same extended projection: so, nominal functional heads
will all have the base feature n;, while verbal ones will be v;.

— We can account for the optionality of adverbial modifiers: so, for
example, the derivation of “(Probably) (suddenly) Napoleon died”,
discussed in Chesi (2004, 138-40), and Chesi (2007, 55-56) where the
two optional adverbs are problematic, can be obtained given a (very
simplified) lexicon as:

[~ Napoleon|, [N = V; die|, [=V; Va suddenly], [=V2 Vs -ed], [=V5 Vi
probably|, [=V C'].

The complementizer C' will be able to merge with any of the V;, thus
allowing the adverbials to be optional.

2Cf. Belletti (2004); Cinque (1999, 2002, 2006); Rizzi (1997, 2004).
31In the following discussion, cat:number will be alternatively represented as catnymper-

Other than by the use of level numbers, the hierarchies discovered by the
cartographic studies are reflected in LF:

e I adopt a simple predicate-argument structure for LF and, crucially, el-
ements which occur higher in the hierarchy act as predicates taking the
lower structure as their argument.

Another important addition to Stabler’s model is the use of variable-
sharing between syntactic features and PF representation:

e PF representations can contain variables which are crucially shared with
syntactic features. These variables are instantiated by feature-checking in
the usual probe-goal relation (cf. Chomsky, 2001, 2005; Hornstein et al. ,
2005, p. 317 ff.). In this way, features can be erased from syntax when
checked, but their PF effects remain visible for the PF interface.

For example, the morphonological entry which covers the Spanish forms
bueno, buena, buenos, buenas is buen-gen-num, where gen and
num are variables.? Among the syntactic features (which are those to be
checked by movement operations), there will be something as — fgender :
gen and — frumper : Snum$. A move operation triggered by a noun with,
for example, + fyender : F' and + fpum : P will assign the right gender and
number values, so that buen-gen-num becomes buen-F-P. This will
be converted into buenas by morpho-phonetic rules.® This use of features
is described more fully in section 3.

The minimalist grammar here developed uses feature-checking as a mor-
phological device to instantiate e.g. agreement, much in the way as feature
unification is used in other computational models.

e the problem of persistent features is solved simply by putting the same
feature twice, once as a licensor and then as a licensee (see section 3.1). For
example, in the Spanish noun phrase estas personas buenas, gender and
number features may still be checked when the nuon phrase is integrated
in a higher structure, e.g. estas personas son buenas. Let’s therefore say
that, simplifying, the determiner has the following feature structure:

=n + fgender : $9€N$ + fnumber : num (1)

d - fgender : $g€n$ - fnumber : num

4Variables have the same name of the feature surrounded by $. If two different variables
should be needed with the same name, numerical indices are added. So, for example, $gen1$,
$gens$. This operation is done automatically by the program when variables need renaming
(see section 3.2).

5The process here described refers to the generation process. In parsing, the algorithm
starts, of course, with an already instantiated form, as for example buenas. morpho-phonetic
rules will change it into buen-F-P, with features — fgcpnger : F' and — fnumber : P. A movement
operation will check these features against those of the nominal head.

6Cf. 7, p. 226, note 13: “Morphological agreement phenomena involve feature copying in
PF”.

Crucially, the same variables gen and num are shared among the rel-
evant licensors and licensees. Let the feature structure of the phrase per-
sonas buenas be the following:

n:2 _fgender : fem _fnumber : pl (2)

First, Merge({estas},{personas buenas}) will apply, erasing the selector
=n from the determiner and the base n:2 from personas buenas. Then,
two instances of move will check first +fgenger and then + frumper of the
determiner against the relevant features of the noun phrase. Checking
will instantiate the variables gen and num. After these operations,
the feature structure of the determiner will be:

d - fgender : fem _,fnumber . pl (3)

In this way, we get the effect of persistent features without any machinery
such as optional deleting, argued against by Chesi (2004).

e I have adopted a reverse-Polish notation for LF, which allows for a very
simple bottom-up building of LF (in the parser) and bottom-up processing
of LF (in the generator).

For example, let the LF of the sentence “this person moves” be something
like this:”

DECL(PRESENT(MOVE(THIS(PERSON)))) (4)

In reverse-Polish notation, this becomes

PERSON THIS MOVE PRESENT DECL (5)

Here is how a traditional predicate-argument structure becomes in reverse-
Polish notation:

Arity | Structure Notation

0 arg arg

1 pred(arg) arg; pred

2 pred(argy, args) arg; args pred

3 pred(argy,args,args) | arg) args args pred

"The LF, output of the parsing process and input of the generator, is a very simple
predicate-argument scructure.

Some examples of nested structures:

Structure Notation

predy (argy, preds(args)) arg; args preds pred;
predy (argy, arge, preds(args, args)) | argy arge args argy preds pred;
predy (argy, preds(preds(args,args)) | argy arge args preds preds pred;

After this cursory survey of the main characteristics of this implementation,
the next section will briefly review Stabler’s model of minimalist grammars.

1.2 Minimalist Grammars

As in categorial grammars (see e.g. Steedman, 2000), a minimalist grammar
consists mainly of a lexicon; syntactic constructions are generated by the com-
binatorial properties of lexical items,® together with the two structure-building
operations merge and move. These operation are triggered exclusively by the
syntactic features of the lexical items.

A lexical item is essentially a bundle of features. Each item has three types
of features:

syntactic features, which determine the morphosyntactic properties of the lex-
ical item, and trigger the two operations of merge and move. For example,
a transitive verb like read has the categorial feature v, and the selection
feature =d, meaning that it will merge with a DP in a head-complement
structure. An inflection head like -s will have among its features =v, so it
will merge with a verb to form a structure [;i v];

phonetic (PF) features, represented by a string of characters. I prefer to call
these features morpho-phononetic, because this implementation allows
for “abstract” PF representations containing wvariables, which correspond
to variables in the syntactic features.

semantic (LF) features, which will be represented as an uppercase LF pred-
icates. Merge operations compose semantic features, so that the LF of
the head takes as its argument the LF of the merged item (complement
or specifier). As LF is in reverse-Polish notation, this means simply that
both LFs are represented by strings, and LF}.qq is concatenated after
LFcom,pl-

1.3 Syntactic features

There are four kinds of syntactic features, grouped in two sets:°

8The program here developed adds a morpho-phonetic rule component.
9In section 4, some possible refinements of this architecture are briefly discussed, which
take into consideration more recent proposals.

1. Categorial features

base features like v, a, n. Each lexical item has one and only one catego-
rial feature;

selectors like =v, =a, =n. An item with selector = f can merge with an
item whose categorial feature is f. Both f and = f are deleted after
merge. Furthermore, in my implementation, an item with selector
= f; can merge with an item whose base is base f;, if ¢« > j, or with
an item whose base is f, for any i. Again, both f; and = f; are
deleted after merge. If an item has more than one selector, the first
one will trigger merge with a complement, all the others will select
specifiers.

2. Movement-related features

licensors represented as +f (or, in my implementation, also as +f:val),
together with

licensees trigger the move operation. An item with +f on the top of
the tree will attract an item lower in the syntactic tree, whose first
feature is— f, if there is no other subtree with the feature— f (shortest
move constraint). In my implementation, an item with +f:vall on
the top of the tree attract an item lower in the syntactic tree, whose
first feature is -f:val2, if vall can be matched with val2. In that
case, move applies and the two features are deleted. Each of the two
values can be a variable or an actual value (for example, if the feature
iS fgender, values could be masc, fem, or a variable $gender$).!°

To check the feature vall against val2, the following procedure is applied:

e if neither vall nor val2 are variables, they match only if they are
identical (so e.g. —fgender : masc matches +fgender : Mmasc but not
_fgender : fem);

e if both are variables, they are unified: after move, vall = val2, and
when either will be assigned a value (by later movement operations),
the other will automatically assume the same value;

e either one of vall, val2 is a variable and the other an actual value,
the variable is assigned that value. So e.g. +fgender : gen and
—fgender : masc match, and the variable gen is assigned the value
masc.

When a variable is assigned a value, all instances of that variable in the
morphophonological and morphosyntactic features will be assigned that value,
as we have seen before in the brief discussion of Spanish adjective gender agree-
ment. In this way, even if the two features get deleted by move, their values can
persist if there are other instances of that variable.

10The program requires that possible values for each feature be declared in advance. In this
way, ther parser can go back, for example, from buen-F-P to buen-gen-num.

1.4 The Lexicon

The program implements a lexicon as a Python dictionary'!, using the LF

representation as key, and a list of strings as value. The first item of the list

represents the PF, and all the following items are the morphological features.
An entry looks like this:

LF : [PF,fl,fQ,...] (6)

Of the syntactic features f1, fo, ..., only the first of the list is active (that
is, it can trigger some operation).!? For example, consider the item:

LF; : [PFl,:fl, +f2 s vals, f3, —f4 : val4] (7)

which can be taken directly from the lexicon, or be the effect of previous
derivations. The only possible operation for this item is a merge with some
item of the form:

LFQZ[PFQ,fl,...] (8)

If merge applies, the top feature will be deleted, and our first item becomes:

LF, + LF5 : [PFl, —l—fg s vals, fg, —f4 : val4] (9)

Now the active syntactic feature is +f : vals, so the item can only attract a
movement candidate, whose first morphological feature is —f : val;, where val;
must match valy in the sense defined above. After movement, +fs : vals will
be deleted, and f3 will become the active feature, and so on, until all syntactic
features have been deleted.

1.5 A Sample Derivation

Let us now see how the machinery described above works in the actual derivation
of a simple sentence, Titus praises Lavinia.'®

The derivation begins by selecting the lexical items with which the structure
will be built. This set of selected items constitues a numeration. Figure 1 repre-
sents the numeration for the sentence Titus praises Lavinia (LF representations
are boxed, PF are in italics. € represent an empty category, that is, an item
with null PF.).

LA dictionary in the programming language Python is essentially a list of ordered pairs
<key,value>.

121t is the “edge feature” of Chomsky (2005, 6).

13The example is taken from (Harkema, 2001, 31-35), cf. also Stabler (1997). T have only
added the LF representations.

Figure 1: Sample Numeration
n -k

n -k , =nvt-v , =vt+k =n pred,

| | |
| LAVINIA | | TITUS | | PRAISE |

lavinia titus praise €

=pred +v +ki

—S

The derivation process selects an item at a time from the numeration, and
adds it to the structure built so far, applying merge, then tries to apply move
if possible.

We start by selecting items 1 and 3 and merging:

>
| LAVINIA; PRAISE; |

-k -v
I IP
lavinia praise

after merge, the categorial features n and =n disappear. The tree is headed
by the arrow > pointing to the head of the tree. (in a more traditional GB
notation, this tree would look as

v

RN

N A%

lavinia praise

or, with bar levels,

\4

RN

N A%

lavinia praise

I adopt here the notation used in Harkema’s and Stabler’s works).

Note how the merge concatenates immediately the two LFs.!4

In the next step, the fourth item is selected and merged with the tree built
so far. The result is:

<
| LAVINIA; PRAISE; PRED; |

=n pred >
|
s Y
[(2

lavinia praise

The head of the construction is now the phonetically empty pred. Now a
move operation is possible: the head of the tree has a feature k to check, and
the noun lavinia has the corresponding feature to be checked (+k and -k are
boxed in the above tree). After movement, the tree becomes

>
LAVINIA; PRAISE; PREDg3 ‘

lavinia; <
=n pred >
IE (1
€ ti _|V
[J2
praise

In the next step, the lexical item titus is picked out from the numeration
and merged:

14 Move has no effect on LF representation in this framework. This is a peculiarity of my
implementation, whose consequences will have to be tested on larger samples of English than
NSM.

>
| TITUS, LAVINIA; PRAISE, PRED; |

-k >
| /\
[J4 lavinia; <
titus /\
pred >
| /\
IE I v
€ ti |
IP
praise

The head of the tree is the pred item (note how it is the only categorial feature
present in the tree; hte other have been discharged after a successful merge).
There remains item [; —s] to be selected, and merged with the structure:

>
| TITUS, LAVINIA, PRAISE; PRED; INFL; |

[+v] +ki >
| /\

s -k >
—5 | /\
[]4 lavinia; <
titus

(2

praise

The head 7 has still two features to check: +wv, boxed in the above tree, and
+k. These features are checked by the two last applications of move:

10

>
TITUS, LAVINIA; PRAISE; PRED;3 INFL;

()2

praise;

[l4 lavinia; <
titus

t; t;
>
TITUS, LAVINIA; PRAISE, PRED3 INFLj5
[
titusy />\
2 <
praise; /\
i >
| /\
05 4 >
—5 /\
lavinia; <
IE -
€ /\
(1 [J2
t; t;
The final LF is equivalent to:
INFL(PRED(PRAISE(LAVINIA), TITUS)) (10)

and the PF is titus praise -s lavinia.

11

1.6 Competence and Performance'®

The derivation sketched above is an example of how minimalist grammars can
model the speaker’s competence. As Chomsky has always made clear, from
the very beginning (e.g. Chomsky, 1957, 1965), a generative grammar is not
involved in the production of specific sentences, but is to be understood as a
computational device which generates, in the mathematical sense, the gram-
matical sentences of a language, assigning them a structural description.

A generator and a parser, on the other hand, produce and, respectively,
analyse particular sentences. A generator produces a sentence starting from a
specified LF, while a parser goes the opposite way, from PF to LF. Being so,
a generator-parser can be thought of as a model of a speaker-hearer’s perfor-
mance.'5

So the term generate means two different things:

e In the Chomskian competence-oriented sense, generate means enumerate
all and only the grammatical sentences which can be derived by a gram-
mar;

e In computational linguistics, to generate a sentence means to produce a
specific sentence.

Given the enumeration above, the computational device can generate (in the
first sense), beyond the sentence “Titus praises Lavinia”, also “Lavinia praises
Titus”, by merging “praise” with “Titus” instead of “Lavinia” in complement
position.

If we add to the numeration the following item:

=pred +v +k i

—d

we can also generate “Titus praised Lavinia” and “Lavinia praised Titus”.
And so on.

We can summarize the difference between competence and performance as
in table 1.6.

The model of competence exemplified by the above derivation is similar to
the one proposed in Hornstein et al. (2005), from which I take (pag. 328)
figure 1.6, slightly adapted:'”

15 An illuminating discussion on this issue can be found in Chesi (2007).

16This is true, of course, only to the extent that a generator-parser is not built simply as
a computational device, but can claim to be models of the human generation and parsing
processes.

17«Select” refers to selection of items from the numeration, while move is analyzed as a
combination of two elementary operations, copy, which copies an item from a lower position
in the tree, and merge.

12

Table 1: competence and Performance

Competence Performance
Parsing | Generation
Starting point | Numeration PF LF
Result All possible pairs {PF,LF} | LF PF

Figure 2: a model of Minimalist Grammar

Numeration

lSelect&Merge&Copy

LF Spell—Out PF

The main difference concerns the spell-out operation. In my implementation
(as in Stabler (1997) and Harkema (2001), if T understand them correctly, as
well as Chomsky (2005, p. 9)), LF is not mapped unto PF by a (single) spell-out
operation; instead, LF and PF are built in parallel: each application of merge
and move operates on all the three kinds of features (syntactic, semantic and
morpho-phonetic) at the same time. In particular:

e syntactic features are matched and deleted by both merge and move;

e PFs are concatenated, again by both merge and move, provided the rele-
vant items will not move further. This could be seen as a particular form
of spell-out happening at each step in a derivation. A similar model is pro-
posed in Wojdak (2005), and exemplified with extensive documentation
from the Wakashan language Nuu-chah-nulth;

e in my implementation, merge (alone) also composes LFs.

This is not yet the whole story, however, because in my implementation PF
and LF, once built, still have to undergo some transformation, in the form of
PF-rules and LF-rules respectively. PF- and LF-rules are implemented as a
cascade of regular expressions.

1.7 PF- and LF-rules

The use of variables and features in PFs produce “abstract” PFs, which will have
to be instantiated by PF-rules. For example, in the Spanish fragment that we
will consider in section 3, the syntactic component produces PFs like est-F-P
dos persona-P, which will have to be turned into estas dos personas.

As for LF-rules, their need is felt at once when we try to build a translator.
I give an example of a problem I faced in building the English and Tok Pisin

13

modules for the NSM translator: one “canonical sentence” of NSM is “I feel
something bad”. To express this in Tok Pisin, we have to say bel bilong mi nogut,
literally “my stomach is bad”. The Tok Pisin parser produces a “superficial” LF
of the kind BAD(STOMACH(ME)), which is then turned into a “deep” LF like
FEEL_BAD(ME).

The Tok Pisin generator works in reverse: suppose it is fed with the output
of the parsing of the English NSM sentence “I feel something bad,” which will
be something like FEEL_BAD (ME). Before the derivation process starts, this LF
will have to be “translated” into BAD (STOMACH (ME)).

Summarising, the Tok Pisin equivalent of “I feel something bad” is processed
along the schema shown in figure 3 (to be read bottom-up for parsing and top-
down for generation).'8

Figure 3: Performance model of bel bilong mi nogut
ME FEEL_BAD

ME STOMACH BAD

‘2 scan € merge € move‘

bel bilong mi nogut

bel bilong mi nogut

If we look at the derivation of this sentence from a competence point of view,
we could represent it like in figure 4.

We can think of such PF- and LF-rules as not, strictly speaking, part of
syntax, but belonging already to the interface levels.

Putting all together, we obtain the following model of competence shown in
figure 1.7.

to which corresponds the performance model shown in figure 1.7 (again,
a top-down reading represents generation and a bottom-up reading represents
parsing).

In the next section, we will look again at the derivation process, this time
from the performance angle: in particular, we will see how the generator, given
a specified LF, works out the corresponding LF. The parser, which will not
described here, goes the opposite way.

18Cf. again ?, pag. 226: “Much as there are phonological operations that apply exclusively
for interface internal reasons there are numerous and powerful semantic processes that cannot
and should not be reduced to syntax”.

14

Figure 4: Competence model of bel bilong mi nogut

Numeration

PF : bel bilong mi nogut
LF : ME STOMACH BAD

Final PF Final LF

bel bilong mi nogut MFE FEEL BAD

Figure 5: A model of Minimalist Grammar

merge&move

Numeration ——= Intgrmedz'atePF&LF

M\

Figure 6: Generation and Parsing

Universal LF

Language-particular LF

Abstract PF

final PF

15

Figure 7: A Sample Lexicon

lexicon = {
LAVINIA’ : [’lavinia’, ’n’, ’-k’],
TITUS? : [’titus’, ’n’, ’-k’],

’PRAISE’ : [’praise’, ’=n’, ’vt’, ’-v’],
>PRED? . [77’ ’=yt’, ’+k’, ’=n’, ’pred’],
PINFL? @ [’s?, ’=pred’, ’+v’, ’+k’, ’i’]
b

2 Generation

A Minimalist Grammar consists mainly of a lexicon, represented as a Python
dictionary. For our example, we shall take the very restricted lexicon of figure 2.

2.1 Running the generator

By running the generator in verbose mode, we get a trace of the generation
process.

After having loaded the dictionary, and selected it as L2, we feed the gener-
ator with the input LF:

TITUS LAVINIA PRAISE PRED INFL DECL

2.2 The Generation Process

The generator works in a bottom-up shift-reduce fashion. While there are items
on the list:

1. scan:

(a) remove the first LF item from the list;

(b) lookup its features in the dictionary, using LF as key, obtaining a
minimal tree;

(¢) push the obtained minimal tere on the stack.
2. merge, move: Once a new item has been shifted on the top of the

stack, succesive merge and move are attempted until no more operation
is possible:

(a) While the top item’s first feature is = f; and the item immediately
under it has f; as its first feature:

i. pop the two items from the stack;
ii. apply merge
iii. push the new formed item on the stack;

16

(b) Then, try to repeatedly apply mowve to the top item.

(c) And finally, if the top item’s first feature is = f;, repeat from point
2.a above.

(d) If there are LF items left, return to 1.

(e) When the LF string is exhausted, the top of the stack should contain
the generated string, with its base feature.

2.3 Tracing the Algorithm
2.3.1 Scan

The first two operations will always be a scan, because a merge requires at least
two items on the stack.

1 SCAN
-- pf: titus
-- 1f: TITUS
--f: [’::7, ’n’, ’-k’]
-- stack : []
2 SCAN
-- pf: lavinia
-- 1f: LAVINIA
--f: [?::, ’n’, ’-k’]
-- stack : TITUS [n ...];

The tracing shows the stack before the scanned item is pushed. So, at the
first scan, the stack is empty; when LAVINIA is scanned, the stack contains the
minimal tree for TITUS.

No merge is possible, so another scan follows:

3 SCAN

-- pf: praise

-- 1f: PRAISE

- f: [’::?, ?=n’, ’vt?, ’-v’]

-- stack : TITUS [n ...]; LAVINIA [n ...];
2.3.2 Merge

As PRAISE is scanned, a merge is possible: PRAISE has = n as its first
features, and the element just “under” it on the stack has n as its categorial
features.

17

n -k =n vt -v

[LAVINIA| [PRAISE]|
lavinia praise

Merging the two, we get the following tree:

>
\LAVINIA1 PRAISE, \

-k -V

| |
I [J2

lavinia praise

When the generator performs a merge,

1. the categorial and selector features which have triggered the merge oper-
ation are deleted;

2. the LF of the selector, which is the head of the construction, is suffixed
to the string representing the LF of the selected item (complement or

specifier);?

3. As for the PF, two cases must be distinguished:

(a) If the selected item does not have licensee features, it will not move
further. So, its PF can be concatenated to the PF of the head.?°

(b) If, however, the selected item does have licensee features, its PF can-
not still be concatenated to the PF of the head, because the selected
item will move when its licensee featuer will be attracted by a corre-
sponding licensor feature. This licensor could come into the structure
at any later point.?!

In the sentence we are generating, we cannot concatenate the PFs, because
the item LAVINIA has a —k feature to be licensed. The tree is, as it were,
“split” by the —k feature:

19As LF is represented in reverse-Polish notation, suffixing the LF of the head means that
the LF of the head is a predicate which takes the LF of the selected item as its argument.

As for the difference between complement and specifier, cfr Harkema (2001).

20Complements and specifiers

21This is merge 3 of Harkema (2001, p. 86) and Stabler (1997).

18

#1 >
\LAVINIA1 PRAISE, \

#2 -v
| |
k IP
| praise
I
lavinia

The tracing facility of the program represents it as follows:

4 MERGE
-- 1f: LAVINIA PRAISE
#1 -- pf: ’praise’
—— f: [7:7’ ’Vt’, ’—V’]
#2 -- pf: ’lavinia’
—— f: [7:7’ ’—k’]

At this point, the generator cannot apply move, because the top feature on
the stack is a categorial one (vt). So, it goes on to scan the next item:

5 SCAN

-- pf:

-- 1f: PRED

-- f: [’::?, ’=vt’, ’+k’, ’=n’, ’pred’]

-- stack : TITUS [n ...]; LAVINIA PRAISE [vt ...];

The two topmost items on the stack are now

#1 >
\LAVINIA1 PRAISE, \

=vt +k =n pred, and

6 T
k IP
| praise
I
lavinia

These items can be merged and, again, the PFs cannot be concatenated yet,
because of the —k features:

19

6 MERGE
-- 1f: LAVINIA PRAISE PRED
#1 -- pf: ??
- f: [):,’ Y+k’, ’=n’, ’pred’]
#2 -- pf: ’praise’
-- f: [,:,’ Yy]

#3 -- pf: ’lavinia’
- f: [7:7’ ’—k’]

2.3.3 Move

The above trace represents the tree:

<
| LAVINIA; PRAISE, PRED; |

#1 =n pred >
/\

|
IE #3 | #2| v
If [J2

lavinia praise

After having performed merge, the generator tries to apply move, and this
time succeeds. The item —& lavinia is fronted and its licensee feature is deleted.
The phonetic form lavinia can be concatenated to the pred item triggering
movement; however, as that item is phonetically null, no PF effect is seen:

7 MOVE
-- 1f: LAVINIA PRAISE PRED
#1 -- pf: ’lavinia ’
-- f: [?:?, ’=n’, ’pred’]
#2 -- pf: ’praise’
-- f: [,:,’ Yy]

After deleting +k feature from the head, the new topmost feature is another
=n selector. The next item on the stack is n —k titus, therefore a new merge is
possible. Again, the —k feature in titus prevents the PFs from concatenating:

20

8 MERGE
-- 1f: TITUS LAVINIA PRAISE PRED
#1 -- pf: ’lavinia ’
-- f: [?:?, ’pred’]
#2 -- pf: ’titus’
- f: [7:7’ ’—k’]
#3 -- pf: ’praise’
-~ f: [):,’ 'y]

At this point, the topmost feature on the stack is the selector pred. The
next move wil therefore be a scan:

9 SCAN
-- pf: s
-- 1f: INFL
- f: [)::)’ ’=pred’, ’+V’, ’+k’, ’i’,)_f)]
-- stack : TITUS LAVINIA PRAISE PRED [pred ...];

The topmost feature =pred triggers merge:

10 MERGE
-- 1f: TITUS LAVINIA PRAISE PRED INFL
#1 -- pf: ’s lavinia ’
— f: [,:,’ ,+V,,)+k)’ ,i,’ ,_f,]
#2 -- pf: ‘’titus’

- f: [7:7’ ’—k’]
#3 -- pf: ’praise’
-- f: [,:,’ ’—V’]

In the next step, the verb moves to (Spec,INFL) to check its —v feature; then
the subject noun titus moves to (Spec,INFL) too, to check case.

In the first instance of move, the PF of the verb praise is concatenated to
the left of the INFL head —s, because it does not have any more licensees, so it
will not move further:

11 MOVE
-- 1f: TITUS LAVINIA PRAISE PRED INFL
#1 -- pf: ’praise s lavinia ’

21

—— f: [7:7’ ’+k’, ’i’,)_f)]

The same happens to titus in the second instance of mowve:

12 MOVE

-- 1f: TITUS LAVINIA PRAISE PRED INFL

#1 -- pf: ’titus praise s lavinia ’
—— f: [P, 212, 2-f7]

The last item is now pushed onto the stack:

13 SCAN

-- pf:

-- 1f: DECL

- f: [)::)’ ,=i,’ ,+f,’ ’C’]

-- stack : TITUS LAVINIA PRAISE PRED INFL [i ...];

There remain two final merge and move:

14 MERGE
-- 1f: TITUS LAVINIA PRAISE PRED INFL DECL
#1 -- pf: .°
- f: [):,’ Y+f0 1c?]
#2 -- pf: ’titus praise s lavinia ’
—— f: [7:7’ 7_f7]

15 MOVE
-- 1f: TITUS LAVINIA PRAISE PRED INFL DECL
#1 -- pf: ’titus praise s lavinia .’

_ f: [, H h , ,C,]

The generator stops, as no more items remain to be scanned. The stack

contains only one element, of category c¢. Note how the generator, in building
the PF, has also rebuilt the original LF.

22

Figure 8: A Sample Spanish Lexicon

lexicon = A{
’PERSON’ : [’persona-num’, ’n:1’, ’-gen:F’, ’-num:num’],

’GOOD’ : [’buen-gen-num’,
’=n:1’, ’+gen:gen’, ’+num:num’,
'n:2?, ’-gen:gen’, ’-num:num’],

TW0? : [’dos?,
’=n:2’, ’+gen:gen’, ’+num:P’, ’>’,
'n:3’, ’-gen:gen’, ’-num:P’],

’THIS’ : [’est-gen-num’,
’=n:5’, ’+gen:gen’, ’+num:num’, ’>’,
'n:7’, ’-gen:gen’, ’-num:num’]

3 Feature Values and Instantiation

Now we will see how feature checking instantiates morphological agreement. We
start from the Spanish lexicon in figure 3.22
Some peculiarities:

e The symbol >>’ after a licensor, which effects concatenation of the moved
element to the right of the PF of the licensor, instead of the default left-
attachment);

e more importantly, the same variables used in licensors and licensees are
present in the morpho-phonetic features.

For example, the lexical entry PERSON is
’PERSON’ : [’persona-num’, ’n:1’, ’-gen:F’, ’-num:num’],

with the two licensees —gen and —num. In Spanish, persona has feminine
gender, so the value of the licensee —gen is F. As the value of the num/(ber)
feature, however, will depend on the context, it is represented here as a variable
(num). When the number feature will be checked, this variable will get a value
and will pass that value to the morpho-phonetic representation persona-num.

22To simplify matters, the adjective GOOD here takes directly the head noun as its com-
plement. In a real grammar of Spanish, GOOD will have a base feature a, and will be selected
as a specifier by a functional head like EvalP or SubjectCommentP, which will be part of the
extended projection of the noun head (Scott, 2002; Cinque, 2009).

23

3.1 Persistent Features
The lexical entry for GOOD is:

’GOOD’ : [’buen-gen-num’,
’=n:1’, ’+gen:gen’, ’+num:num’,
‘n:2?7, ’-gen:gen’, ’-num:num’],

“Good” is an adjective®?, so both its gender and number will have to be
instantiated by agreement with the head noun. This entry exemplifies also the
solution I propose to “persistent features”, i.e. features which do not delete after
checking, because they will have to “pass on” their values further.

A subject noun phrase, for example, concords in number (and sometimes
also in gender) with the predicate (esta persona es buena vs. estos nifios son
buenos). But if these agreement features get deleted when they are checked
between the head noun and the attribute, they will be no more available.

There is, however, a simple solution: we can simply put the same feature
twice in the lexical entries for adjectives, both as a licensor and a licensee. In the
above lexical entry for GOOD there are both +gen, +num, and —gen, —num,
and, crucially, they share the same variable. As the adjective will check its
+gen:gen features against the —gen: F' of a feminile noun, the variable gen
will become F in all of its instances, and the item GOOD will become

’GO0OD? : [’buen-F-num’, ’+num:num’,
’n:2?, ’-gen:F’, ’-num:num’],

We will see this at work in the following trace. We want to generate the
Spanish noun phrase esta persona, represented as THIS(PERSON) or, in
reverse-Polish notation,

PERSON THIS

The generator will scan the first item and push onto the stack the resulting
tree:

1 SCAN

-- pf: persona-$num.1$

-- 1f: PERSON

--f: [’::?, ’n:1’, ’-gen:F’, ’-num:$num.1$’]
-- stack : []

23Here its category is represented as n:2. A more realistic grammar will surely have the
category a.

24

3.2 Variable Renaming

Note how the variable num has been renamed as $num,$ ($num.1$). When
an item is pushed onto the stack, all its variables are renamed to avoid conflicts
with other variables with the same name. For example, in generating the Span-
ish esta persona hace muchas cosas, we do not want the subject NP to share
the same num variable with the object.?.

After the first item, the second is scanned:

2 SCAN
-- pf: est-$gen.28-$num. 3%
-- 1f: THIS

-- f: [’::?, ’=n:5’, ’+gen:$gen.2$’, ’+num:$num.3$’, ’>’,
'n:7’, ’-gen:$gen.2$’, ’-num:$num.3$’]
-- stack : PERSON [n:1 ...]

Note how the gender and number variable are renamed: We do not want the
variable of this item to end up accidentally called like the one in other items,
but we do want that the three instances of gen present in one and the same
item get the same name, and so the three instances of num, or the “feature-
passing” mechanism described above will not work. And that is exactly what we
have: once GOOD is scanned, all its three num variables become $nums$,
which is different from the $num.$ of the previous item.?®

Returning to the sentence we are generating, now merge becomes possible:

3 MERGE
-- 1f: PERSON THIS
#1 -- pf: ’est-$gen.2$-$num.3$’
-— f: [?:?, ’+gen:$gen.2$’, ’+num:$num.3$’, ’>’,
'n:7’, ’-gen:$gen.2$’, ’-num:$num.3$’]
#2 -- pf: ’persona-$num.1$’
-— f: [?:?, ’-gen:F’, ’-num:$num.1$’]

As usual, the licensees in the complement prevent its phonetic features to
be concatenated with those of the head.

Now, the -gen:F licensee will check against the +gen: $gen.2$ of the head.
After checking, the two features -gen:F and +gen:$gen.2$ disappear, but the
variable $gens$ will become F' everywhere. So, after move, we have:

24This renaming operation is an analogous of a-conversion in A-calculus.

25]n this particular case, the two items will end up sharing the same value for these $num;$
variables, but the generator procedure cannot know it at this stage! It is only after merge and
move will have applied that the two variable will eventually coincide.

25

4 MOVE
-- 1f: PERSON THIS
#1 -- pf: ’est-F-$num.3$’
--f: [?:’, ’+num:$num.3$’, >,
'n:7’, ’-gen:F’, ’-num:$num.3$’]
#2 -- pf: ’persona-$num.1$’
-——f: [?:’, ’-num:$num.1$’]

The —gen licensee of the adjective has got the value F', which will be available
for later checking, when for example the noun phrase will be selected by a
predicate. In this way, we have preserved the value of the feature, without
introducing any new machinery (e.g. the distinction between features which
delete after checking and those which do not).

At this point, +num:$num.3$ and check -num:$num.1$ will effect another
move. Since both values are variable, the two variables will become one:

5 MOVE

-- 1f: PERSON THIS

#1 -- pf: ’est-F-$num.1$ persona-$num.1$’
-—f: [?:?, ’n:7’, ’-gen:F’, ’-num:$num.1$’]

The generation process ends, producing the string

est-F-$num.1$ persona-$num.1$

3.3 Default Values

The above string has an unstantiated variable $num;$. Using a standard min-
imalist terminology, this would cause the derivation to crash at PF.

To avoid this, uninstantiated variables get a default value before passing
through PF-rules. Default values are declared in the grammar.

For example, for the Spanish mini-grammar we are considering, we could
declare ‘masculine’ and ‘singular’ as the default values of, respectively, ‘gender’
and ‘number’. The declaration looks like this in the Spanish file:

default = {’gen’ : ’M’, ’num’ : ’S’}
By applying the default values, the string
est-F-$num.1$ persona-$num.1$

becomes:

26

est-F-S persona-S
Morpho-phonetic rules then transform this into:

esta persona

3.4 Another example of generation

Let us look at another example, generating the phrase estas dos personas. The
initial LF is

PERSON TWO THIS

and the process begins, as usual, with two scan operations:

1 SCAN
-- pf: persona-$num.4$
-- 1f: PERSON
--f: [’::?, ’n:1’, ’-gen:F’, ’-num:$num.4$’]
-- stack : []
2 SCAN
-- pf: dos
-- 1f: TWwO

-- f: [?::?, ’=n:2?, ’+gen:$gen.5$’, ’+num:P’, ’>’,
’n:3’, ’-gen:$gen.5$’, ’-num:P’]
-- stack : PERSON [n:1 ...]

The item “two” triggers plural agreement in the head noun (by its licensor
+num:P). This renders the whole noun phrase plural (thanks to the licensee
-num:P).

The numeral and the head noun are first merged:

3 MERGE
-- 1f: PERSON TWO
#1 -- pf: ’dos’
-— f: [?:?, ’+gen:$gen.5$’, ’+num:P’, ’>’,
’n:3’, ’-gen:$gen.5$’, ’-num:P’]
#2 -- pf: ’persona-$num.4$’
-— f: [?:?, ’-gen:F’, ’-num:$num.4$’]

27

then, gender and number features are checked by two successive move oper-
ations:

4 MOVE
-- 1f: PERSON TWO
#1 -- pf: ’dos’
-- f: [?:’, ’+num:P’, ’>’, ’n:3’, ’-gen:F’, ’-num:P’]
#2 -- pf: ’persona-$num.4$’
- f: [?:?, ’-num:$num.4$’]
5 MOVE
-- 1f: PERSON TWO
#1 -- pf: ’dos persona-P’
-- f: [?:?, ’n:3’, ’-gen:F’, ’-num:P’]

After this step, when the determiner is first scanned, then merged, the noun
phrase under construction is already feminine and plural:

6 SCAN
-- pf: est-$gen.6$-$num.7$
-- 1f: THIS

--f: [’::?, ’=n:5’, ’+gen:$gen.6$’, ’+num:$num.7$’, ’>’,
’n:7’, ’-gen:$gen.6$’, ’-num:$num.7$’]

-- stack : PERSON TWO [n:3 ...]
7 MERGE

-- 1f: PERSON TWO THIS
#1 -- pf: ’est-$gen.6$-$num.7$’

-— f: [?:?, ’+gen:$gen.6$’, ’+num:$num.7$’, >,
'n:7’, ’-gen:$gen.6$’, ’-num:$num.7$’]

#2 -- pf: ’dos persona-P’
-— f: [?:?, ’-gen:F’, ’-num:P’]

Now it’s the turn of the determiner to check gender and number:

8 MOVE
-- 1f: PERSON TWO THIS
#1 -- pf: ’est-F-$num.7$’
-—f: [?:’, ’+num:$num.7$’, >,

28

'n:7’, ’-gen:F’, ’-num:$num.7$’]

#2 -- pf: ’dos persona-P’
-— f: [?:’, ’-num:P’]
9 MOVE
-- 1f: PERSON TWO THIS
#1 -- pf: ’est-F-P dos persona-P’
-- f: [?:?, ’n:7’, ’-gen:F’, ’-num:P’]

And we are done. Spell-out will derive the phonetic form:

========= SPELL-QUT =========
==> est-F-P dos personas

==> estas dos personas

4 Conclusions

The generator described in the pesent article, together with the parser, has
been already “put to use” in automatic translation between English and Tok
Pisin NSMs, with encouraging resultates. Much remains to do, of course.

e A first “minimalist” question imposes itself: there are no constraints on
feature composition of lexical item. We could envisage such improbable a
lexical items as:
=y =v =v =v =n =n =n a PF LF
just as in early generative grammars it was possible to write base rules as:
V --> NP + A.

To make such rules impossible, X-bar theory was developed, as it is well
known.

In Zamblera (Forthcoming) I have attempted to advance some suggestions
about how lexical representation could be constrained.

e Another important question concerns agreement: As noted in the litera-
ture (Cf. e.g. Chesi, 2004, 2007; Sigurdsson, 2006), merge must involve
features agreement; especially Chesi’s idea of merge as unification is very
appealing from both a theoretical and a computational point of view.

This idea can be readily implemented in this model if a select feature
is immediately followed by all the licensees which represent the relevant
agreeing features.

29

For example, suppose head a selects head b as its complement?® only if
the two heads agree in features f; and fs. The following lexical entries

capture exactly this situation:?”

b —f1 —fo ... (11)

and

=b —|—f1+f2>...a... (12)

If a selects b as its specifier, we will simply omit the > symbol from the
above representation, and move will adjoin the moved item to the left,
yielding Spec < Head linearization.

By the way, it would be desirable to have a uniform move, which only
left-adjoins the goal to the probe?®. In this case, we could keep the “right
adjoining” move only to simulate merge-triggered agreement in a head-
complement configuration. A head which selects both complement and
specifier would thus have the following representation:

=Comp +agr; +agr; > ...
=Spec +agry +agry ... (13)

Base. ..

Finally, some plans/wishes for the future:

e Empirically adequate grammar modules should be written for a variety of
languages, which can cover at least the NSM subset;

e A bottom-to-top parser builds tipically a lot of unnecessary structure, to
be later discarded. A worthwhile enterprise would be developing of a top-
down parsing and generation algorithm, like that in Harkema (2001) or
Chesi (2004). The notion of phase could then be very useful; the present
implementation, based on the “pre-phases” model of Stabler 1997, does
not uses this concept;

e The grammar coverage could be extended to some larger subset than NSM;

261n Stabler’s model, as well as in my implementation, there is a simple linearization rule:
complements are spelled out on the right of their heads, and specifiers on the left.

27Recall that the > symbol after a licensor effects the “right-adjoining” of the moved item.
So, in this case, the resulting order is that of a simple merge.

28 As Stabler (2011b) has shown, allowing merge and mowve to specify the adjoining direction
does not increase the generative power of the grammar anyway.

30

e An interesting “variation on the minimalist theme” is represented by Brody’s
mirror theory,??, which has been formalized by Kobele (2002). Kobele’s
formalization of Brody’s “mirror theory” is very similar to Stabler’s model.
The Python program that I have developed contains a module which works
derivations using Mirror Theory, though I have not tested it yet. Develop-
ing a Mirror Throretic Grammar for English NSM would be an interesting

exercise;

e A question which is interesting also from a theoretical point of view: could
there be variable-sharing among LF and syntactic features, as already PF
has? Though I have not used this feature in the English NSM grammar,
the program could already allow it “for free”.

Appendix: The program

The program has, so far, only a command-line interface. A grammar for the
parser is loaded by issing the command 11 <filename>, while the command
12 <filename> loads a grammar for the translator. After a grammar is loaded,
the command t <sentence> translates a sentence from 11 to 12 (if no 12 is
selected, the sentence is simply parsed and the LF is output. If no 11 is selected,
the input must be a LF formula, and the output will be the 12 sentence generated
from that formula. For example, given the lexicon-grammar defined above in
the derivatrion of the sentence “Titus praises Lavinia” (section ??) contained in
the file “svo.py™

>> 11 svo
>> t titus praise s lavinia .
TITUS LAVINIA PRAISE PRED INFL DECL

is an example of parsing, while

>> 12 svo
>> t TITUS LAVINIA PRAISE PRED INFL DECL
titus praise s lavinia

is a sample generation.

The command test is useful in developing new grammar. After the com-
mand, the user can input sentences, which are first parsed. The LF thus ob-
tained is fed back into the generator, and, if all goes well, the input sentence
should be produiced again.

>>>
>> 11 svo
>> v

29Brody (2000).

31

>> test

?- titus praise s lavinia .

parse: TITUS LAVINIA PRAISE PRED INFL DECL
generation: titus praise s lavinia

References

Belletti, Adriana (ed). 2004. Structures and Beyond. The Cartography of Syn-
tactic Structures, vol. 3. Oxford University Press.

Boeckx, C. 2010. Ozford Handbook of Linguistic Minimalism. Oxford University
Press.

Boeckx, Cedric (ed). 2006. Agreement Systems. Amsterdam, Philadelphia: John
Benjamins.

Brody, Michael. 2000. Mirror Theory: Syntactic Representation in Perfect Syn-
tax. Linguistic Inquiry, 31, 29-56.

Chesi, Cristiano. 2004. Phases and Cartography in Linguistic Computation.
Toward a cognitively motivated computational model of linguistic competence.
Ph.D. thesis, University of Siena.

Chesi, Cristiano. 2007. An Introduction to Phase-based Minimalist Grammars:
why move is Top-Down from Left-to-Right. STiL Studies in Linguistics, 1.

Chomsky, Noam. 1957. Syntactic Structures. The Hague: Mouton.

Chomsky, Noam. 1965. Aspects of the Theory of Syntaxz. Cambridge, MA: The
MIT Press.

Chomsky, Noam. 2001. Derivation by Phase. In:Kenstowicz (2001). Pages 1-52.
Chomsky, Noam. 2005. On Phases.

Cinque, Guglielmo. 1999. Adverbs and functional heads: a cross-linguistic per-
spective. Oxford University Press.

Cinque, Guglielmo (ed). 2002. Functional structure in DP and IP. The Cartog-
raphy of Syntactic Structures, vol. 1. Oxford University Press.

Cinque, Guglielmo (ed). 2006. Restructuring and functional heads. The Cartog-
raphy of Syntactic Structures, vol. 4. Oxford University Press.

Cinque, Guglielmo. 2009. The Syntax of Adjectives. A Comparative study. The
MIT Press.

Haegeman, Liliane (ed). 1997. Elements of Grammar. Dordrecht: Kluwer Pub-
lications.

32

Harkema, Hendrik. 2001. Parsing Minimalist Languages. Ph.D. thesis, Univer-
sity of Califrnia, Los Angeles.

Hornstein, Norbert, Nunes, Jairo, & Grohmann, Kleanthes K. 2005. Under-
standing Minimalism. Cambridge Textbooks in Linguistics. Cambridge Uni-
versity Press.

Kenstowicz, M. (ed). 2001. Ken Hale: A life in language. Cambridge MA: MIT
Press.

Kobele, Gregory. 2002. Formalizing Mirror Theory. Grammars, 5(3), 177-221.
Retoré, C. (ed). 1997. Logical Aspects of Computational Linguistics. Springer.
Rizzi, Luigi. 1997. The Fine Structure of the Left Periphery.

Rizzi, Luigi (ed). 2004. The Structure of CP and IP. The Cartography of
Syntactic Structures, vol. 2. Oxford University Press.

Scott, Gary-John. 2002. Stacked Adjectival Modification and the Structure of
Nominal Phrases. Vol. 1 of Cinque (2002). Pages 91-120.

Sigurdsson, Halldo6r. 2006.

Stabler, Edward. 1997. Derivational Minimalism. In:Retoré (1997). Pages
68-95.

Stabler, Edward. 2011a. Computational Minimalism. Acquiring & Parsing Lan-
guages With Movement. John Wiley & Sons Inc.

Stabler, Edward. 2011b. Computational perspectives on minimalism. Pages
616—641.

Steedman, Mark. 2000. The Syntactic Process. MIT Press.

Wojdak, Rachel. 2005. The Linearization of Affizes: Evidence from Nuu-chah-
nulth. Ph.D. thesis, The University of British Columbia.

Zamblera, Francesco. Forthcoming. NSM meets Minimalism. A Preliminary
Minimalist Grammar of the English Semantic Metalanguage.

33

