
NSM-DALIA: A JavaScript NLP Tool for

Natural Semantic Metalanguages

Francesco Zamblera

July 25, 2010

1

July 25, 2010 nsm-dalia-1-0.nw 2

Abstract

This is nsm-dalia, an automatic translator for Natural Semantic Meta-
languages. The code is in javascript with a HTML interface.

Code and documentation are written with Norman Ramsey’s noweb

tool for literate programming.
After a short introduction on Natural Semantic Metalanguage (1.1),

the NSM-DALIA implementation of the NSM (1.2) and the particular ap-
proach to automatic translation here adopted (1.3) are briefly discussed;
then the HTML interface is described (2), followed by the two main sec-
tions of the javascript code: the translation engine (3.2) and the grammar
compiler (3.3).

1 Introduction

1.1 The Natural Semantic Metalanguage

The linguistic theory known as Natural Semantic Metalanguage (NSM) has been
developed by Anna Wierzbicka and colleagues for some forty years.

Some basic assumptions of this theory are:

• We cannot escape from natural language(s) to describe meaning in nat-
ural language. Formalized systems used to describe natural languages
need themselves natural language to be understood and interpreted (by
humans). That is, natural language can function as its own metalanguage;

• To define the meaning of a word, we must use other words which are
simpler than the one we want to define, otherwise we have defined nothing.
Defining a word using simpler words is called reductive paraphrasis ;

• There is a basic set of concepts, called semantic primes, whose meaning
is undefinable; that is, there are no simpler words which we can use to
paraphrase their meaning;

• These semantic primes are the same for all languages and are expressable
in every language. A particular language can express a concept using a
word or an affix or a syntactic construction; a word which expresses a
semantic prime can also have other meanings in a language (for example,
the Spanish word querer expresses the semantic prime WANT, but it
also means love); however, the concepts in question can nevertheless be
expressed;

• These semantic primes can be combined in some basic ways, which the
theory tries to discover. These combinations are again available in ev-
ery language, though the syntactic and morphological realization of these
combinations differ from language to language;

July 25, 2010 nsm-dalia-1-0.nw 3

• Thus, according to the NSM theory, all languages share a basic set of
words and a basic set of combinatorial possibilities of these words. With
these primes, each language can construct sentences and texts which are
perfectly translatable in every other language. The analysis of these basic
sentences gives the grammar core of the language.

Briefly, the NSM of a language (that is, English NSM, Spanish NSM, and
so on), is a “minilanguage” which can be thought of as the basic subset of
the language in question. It contains the very basic vocabulary and sentence
patterns. With this “minilanguage”, we can express many things, among which:

• dictionary definitions of words and expressions;

• explanations of grammatical morphemes and constructions;

• cultural scripts, i.e. texts which describe a basic pattern of behaviour in
a given society.

1.2 NSM-DALIA

As the NSM subset of a language is both lexically and syntactically very re-
stricted, it should be feasible to build NLP applications for NSM.

I had begun working on a PROLOG program called NSM-DALIA some years
ago; this program is still being developed but it already works.

The program which is documented here is a “minor” variant of the PROLOG
one, written in JavaScript. As for version 1.0, the program works essentially
as an automatic translator from one NSM to another. Version 1.0 comes along
with English and Spanish NSMs installed. Writing a new grammar is much
easier than in PROLOG NSM-DALIA. The choice of the scripting language
JavaScript allows the program to run in virtually every modern web browser,
without the need to install software on the user’s computer. The main drawback
is that html-embedded client-side scripting languages such as JavaScript cannot
read from or write to the user’s disk. So the functionalities of the program are
rather limited: for example, users cannot read the text to be translated from
a file and write the translated output to another file, but they must open the
input file in an editor, copy-and-paste the text into the input textarea of the
program, and copy-and-paste the output text from the output textarea to the
desired file. A Python version is being developed which has no such restriction,
and comes along with other facilities, e.g. a tool to help in grammar writing.

1.3 The Grammars

Grammars are simply list of rules which are stored in a JavaScript array.
Grammars define no intermediate metalanguage; rules map syntagmas of

one NSM directly to another NSM; there are also rules who perform basic mor-
phological analysis.

Each rule has two parts:

July 25, 2010 nsm-dalia-1-0.nw 4

1. a match;

2. a replacement for the match.

The translation engine is a simple cycle through the grammar array, which
tries the match part of each rule against the input text. If the rule matches, the
replacement is carried out.

For example, the English morphology contains rules like these:

["does", "3 do"],

["has", "3 have"],

If the input text has somewhere the verb “do”, this will be analyzed into “3
do”. Later, a rule for English-to-Spanish translation could replace “3 do” with
“hace”.

As a regular expression is equivalent to a finite state grammar, the transla-
tion engine can be thought of as an implementation of a cascade of finite state
automata. Given the restrictedness of the NSM, this limited power should be
sufficient. It would be a theoretically interesting result to show that Natural
Semantic Metalanguages are finite-state languages, but this is beyond the scope
of this paper.

1.3.1 Rules

As we have seen, compiled rules have two parts, a match and a replacement.
The grammar author, however, can write three-part rules, which have the form
match string, replace string, variables. Such rules are shortcuts for a list of rules
with the same pattern.

Here is an example of a three-part rule:

["STEMn", //match

"p STEM", //replace

"STEM=siente,puede,mueve,piensa,\ //variables

hace,oye,tiene,muere,vive,\

sabe,quiere,esta’"

]

This rule matches, for example, a part of an input string like “piensan”, and
transforms it into “p piensa” (p stands for “third person plural”).

Such a rule has the same effect of (and in fact is compiled into) a list of rules
like the following:

["siente", "3 siente"],

["puede", "3 puede"],

["mueve", "3 mueve"],

["piensa", "3 piensa"],

...

July 25, 2010 nsm-dalia-1-0.nw 5

And here is a three-part rule taken from the Spanish morphology section,
which illustrates a more elaborate use of variables, for the analysis of the Spanish
imperfecto:

["STEM1SUFF1", // match

"SUFF2 IMPF STEM2", // replace

"STEM=hac|hace, mov|mueve, viv|vive, \ // variable STEM

mor|muere, ten|tiene, sent|siente, \

quer|quiere, v|ve, o|oye, sab|sabe, \

pod|puede; \

SUFF=i’an|p, i’a|3" // variable SUFF

]

...

We can call this a complex use of variables, as against the simple one seen
in the previous example.

This complex rule stands for a long list of simple rules:
[“haćıan”,“p IMPF hace”],
[“haćıa”,“3 IMPF hace”],
[“mov́ıan”,“p IMPF mueve”],
[“mov́ıa”,“3 IMPF mueve”],
. . .

A complex rule is used to map values from the match to corresponding values
of the replacement string. We can define a variable v = a|b|c, aa|bb|cc; in
the match and replacement parts of the rule, we will not use simply “v”, but vn,
where n is a numerical index. v1 will take the values a,aa; v2 the values b,bb;
and v3 the values c,cc; and a value a for v1 will correspond to a value b for v2
and a value c for v3.

1.3.2 How Grammars Work

There are two types of grammars: L1-to-L2 translators and morphology ana-
lyzers.

A complete grammar to be used in the translation process is built by assem-
bling a L1-to-L2 translator and two morphology grammars.

What does this mean? Let us suppose that we want to build a grammar
which can allow translation between English and Spanish NSMs, in both direc-
tion. We then need write:

1. An English-To-Spanish or a Spanish-To-English translation grammar;

2. An English morphology analyzer;

3. A Spanish morphology analyzer.

July 25, 2010 nsm-dalia-1-0.nw 6

In the previous section, we have seen examples of rules of morphology an-
alyzers, but a translation grammar has the same types of rule. Here is a rule
taken from the Spanish-to-English translator:

["<*NP*> algunas ALT1 N1 INT1 AP1",

"<*NP*> some ALT2 INT2 AP2 N2",

"INT=muy|very, 0|0; \

AP=grandes|big, pequen’as|small,

buenas|good, malas|bad, 0|0;

ALT=otras|other,0|0;

NP=personas|persons,cosas|things"],

Variables are used exactly as in the morphology examples; the only new
feature of the previous rule is the initial string <*NP*>, meaning that when a
match is found, the replaced string must be labeled as NP. In the match part,
the string <*NP*> is simply ignored.

That is, if the translation engine finds the string “algunas cosas muy buenas”,
which matches the pattern, it will replace it with <NP* some good things *>.

Later rules can refer to this string, as well as to any string included between
<NP* and *>, as simply (*NP*)1.

Note also the final alternative 0|0, meaning that the item in question is
optional.

2 The HTML Interface

The javascript code works inside a web page written in HTML. The structure
of the HTML file is of course:

6 〈nsm-dalia-1-0.html 6〉≡
<html>

〈head 7a〉
〈body 12〉

</html>

1Note that unlike in a true context-free approach, such “phrases” cannot be nested.

July 25, 2010 nsm-dalia-1-0.nw 7

2.1 The head tag

The head element contains the link to the file nsm-dalia-<version>.js (the
javascript code), to the source code of the grammars, and to some other utility
script. The head element also includes an initialization script, which I have
placed directly in the interface:

7a 〈head 7a〉≡ (6)

<head>

<title>NSM Transator (NSM-DALIA-JS version 1.0)</title>

<meta content="">

<style></style>

<!-- links to the program -->

<script type="text/javascript"

src="grammars_js/eng_morph.js"></script>

<script type="text/javascript"

src="grammars_js/spaCO_eng.js"></script>

<script type="text/javascript"

src="nsm-dalia-1-0.js"></script>

<script type="text/javascript"

src="nsm-dalia-installed.js"></script>

<script type="text/javascript"

src="gnu-gpl.js"></script>

<script type="text/javascript"

src="show_gnu.js"></script>

<script type="text/javascript">

〈initialization script 7b〉
</script>

</head>

The initialization script is called automatically when the web page is loaded,
using the attribute onLoad of the html tag body.

The function newOption, which I modified slightly from an online JavaScript
tutorial (http://www.plus2net.com/javascript tutorial/list-adding.php), creates
a new option object (optn) which will be added to the select list.

7b 〈initialization script 7b〉≡ (7a) 8b .

// This function is a modified version of a function from URL:

// http://www.plus2net.com/javascript_tutorial/list-adding.php

function newOption(text,value) {

var optn = document.createElement("option");

optn.text = text;

optn.value = value;

return optn;

}

Defines:
newOption, used in chunk 8b.

July 25, 2010 nsm-dalia-1-0.nw 8

The function init select list reads the javascript object installed lang,
which contains a list of the languages for which a grammar is available. As for
version 1.0, where the languages are English and (Colombian) Spanish, the ob-
ject installed lang is simply:

8a 〈installed languages 8a〉≡ (13a)

var installed_lang = {

eng : ’English’,

spaCO : ’Espa\u00F1ol (Colombia)’};

Defines:
installed lang, used in chunk 8b.

After having read the list of installed languages, init select list calls the
newOption function for each item to to insert into the select list:

8b 〈initialization script 7b〉+≡ (7a) / 7b 8c .

function init_select_list(list) {

for (var l in installed_lang)

list.options.add(newOption(installed_lang[l],l))

}

Defines:
init select list, used in chunk 8c.

Uses installed lang 8a and newOption 7b.

First of all, the function init select lists, the one called on the onload event,
simply calls the function init select list twice, once for each list:

8c 〈initialization script 7b〉+≡ (7a) / 8b 9a .

function init_select_lists() {

var list = document.getElementById("l1_selector");

init_select_list(list);

list = document.getElementById("l2_selector");

init_select_list(list);

}

Defines:
init select lists, used in chunk 12.

Uses init select list 8b.

July 25, 2010 nsm-dalia-1-0.nw 9

And finally, the function switch intro can be called bi clicking on the line H̆ide
introduction. This function hides the banner and leaves the space available on
the browser window for the text areas.

9a 〈initialization script 7b〉+≡ (7a) / 8c

function switch_intro(hide) {

var sect = document.getElementById("intro_slot");

var switcher = document.getElementById("switch_intro_slot");

if (hide) {

sect.style.display = ’none’;

switcher.innerHTML =

’ \

(Show introduction)’;

}

else {

sect.style.display = ’’;

switcher.innerHTML =

’ \

(Hide introduction)’;

}

}

2.2 The body tag

The body consists of a banner which announces the program name, license, links
to the GNU GPL, a short “how-to-use” paragraph, and options to hide the ban-
ner and to show the transcription table if a transcription system is needed to
enter text which contains non-ascii characters (for example, the Spanish ac-
cented vowels can be entered as a′ for á, i′ for ı́, and so on).

A HTML form follows, which constitutes the interface to the javascript rou-
tines. The form contains, first of all, two textareas, one for the input of the
data, the other for the script to write the output of the translation into. The
two areas form the row of a table:

9b 〈textareas 9b〉≡ (12)

<tr>

<td width="50%">

<textarea rows="15" cols="50" id="t1"></textarea>

</td>

<td width="50%">

<textarea rows="15" cols="50" id="t2"></textarea>

</td>

</tr>

July 25, 2010 nsm-dalia-1-0.nw 10

The two ids t1 and t2 will be referred to by the translator function.
Other than the text areas, the form shows the button Translate. A click on

the button calls the function translate(), the motor of the translation script:

10 〈translate button 10〉≡ (12)

<tr>

<td><input type="button" value="Translate"

onClick="translate();"></input></td>

<td></td>

</tr>

Uses translate() 15.

July 25, 2010 nsm-dalia-1-0.nw 11

The last items in the form are two select list, which contain the languages
installed. The user selects L1 and L2 from these lists. The static code of the
lists contains only the empty option -- Select a grammar -- ; the actual
list is built dynamically by the initialization function init select lists.

The form contains also a checkbox, which can be activated if the user cannot
enter non-ascii characters directly and wants to use a transcription system. A
click on the S̆how table link prints a table onto the browser window with the
transcription.

11 〈select languages 11〉≡ (12)

<tr>

<td><h4 align="center">Source language</h4>

<input type="checkbox" id="toggle_l1_tr">

Input transcription

</input>

(

Show table)

</td>

<td align="center"><h4>Target language</h4></td>

</tr>

<tr>

<td align="center">

<select id="l1_selector" name="l1_selector"

onChange="build_grammars(document.panel.l1_selector.value,’1’);">

<option name="xxx" value="xxx" selected="selected">

-- Select source language --

</option>

</select>

</td>

<td align="center">

<select id="l2_selector" name="l2_selector"

onChange="build_grammars(document.panel.l2_selector.value,’2’);">

<option name="xxx" value="xxx" selected="selected">

-- Select target language --

</option>

</select>

</td>

</tr>

Uses build grammars 31b 32.

July 25, 2010 nsm-dalia-1-0.nw 12

So, here is the body of the HTML interface.

12 〈body 12〉≡ (6)

<body onload="init_select_lists();">

<!-- Title and license banner -->

<h1 align="center">NSM Translator</h1>

<h3 align="center">NSM-DALIA-JS, version 1.0</h3>

<div id="intro_slot">

<p align="center">Copyright (C) 2010 Francesco Zamblera,

under the GNU GPL.

(Show the whole text

of the GNU GPL).</p>

<p>This program comes with ABSOLUTELY NO WARRANTY;

click here for details.

This is free software, and you are welcome to redistribute it

under certain conditions;

click here for details.</p>

<hr/>

<!-- How-to paragraph -->

This is a simple translator for Natural Semantic Metalanguage.

Choose an input language and an output language

from the respective select boxes;

Write some NSM text in the input language text area;

Click on the TRANSLATE button. Translation into output

language will appear in the respective text area.

</div>

<!-- Empty slots for dynamic text -->

<div align="center" id="switch_intro_slot">

(Hide introduction)</div>

<div id="notify_slot"></div>

<div id="license_slot"></div>

<div id="transcr_slot"></div>

<!-- Form -->

<form name="panel">

<table width="100%">

〈select languages 11〉
〈textareas 9b〉
〈translate button 10〉

</table>

</form>

</body>

July 25, 2010 nsm-dalia-1-0.nw 13

Uses init select lists 8c.

3 The Program

The installation information is stored in the file nsm-dalia-installed.js,
which contains the list of the installed languages and information for the correct
building of grammars.

13a 〈nsm-dalia-installed.js 13a〉≡
〈installed languages 8a〉
〈paths 33a〉
〈direct and inverse grammar list 21b〉

3.1 Global Variables

A few global variables are needed:

• current l1 and current l2 contain the language code of L1 and L2 re-
spectively, and are updated when a new language is selected from the
select box;

• current grammar is an empty array which will contain the compiled gram-
mar;

• l1 transcr and l2 transcr are empty arrays which will contain the tran-
scription tables for L1 and L2;

• end of grammar is a regex which strips the text produced by the translator
of the marks <Phrase* and *>.

13b 〈global variables 13b〉≡ (33c)

/* Global variables */

var current_l1 =’xxx’;

var current_l2 =’xxx’;

var current_grammar = new Array();

var current_transcr = new Array();

var l1_transcr = [];

var l2_transcr = [];

〈end of grammar regex 21a〉

Defines:
current grammar, used in chunks 15, 24a, 31b, and 32.
current l1, used in chunks 18, 31b, and 32.
current l2, used in chunks 31b and 32.

July 25, 2010 nsm-dalia-1-0.nw 14

The functions which constitute the program can be grouped into two main
sections: a grammar compiler, which transforms the grammar rules written by
the user into a ready-to-run form, and the motor of the translation process,
which takes a text written in a L1 NSM and applies the grammar rules to
derive the L2 version.

3.2 The translation engine

The compiled grammar consists simply of an array of pairs. Each pair has
a regular expression as its first member and a replacement string as its second
member. The motor scans the array and substitutes every match for the regular
expression in the input text with the replacement string.

So, the code of the translation engine is a very simple function with two
parameters: a grammar and a text to translate. A for cycle implements the
cascade of regular expressions:

14 〈translate a text 14〉≡ (33c)

function apply_grammar(grammar,s) {

for (var i = 0; i < grammar.length; i++)

s = normalize_spaces(s.replace(grammar[i][0],grammar[i][1]));

return normalize_spaces(s);

}

Defines:
apply grammar(grammar,s), never used.

Uses normalize spaces 27b.

July 25, 2010 nsm-dalia-1-0.nw 15

The function is called when the user clicks the Translate button. The button
activates the function translate, which performs he following actions:

1. using the HTML DOM, it gets the input text from the first textarea;

2. as indentation is meaningful in an NSM text, the input passes through
the save indent function, which replaces spaces at the beginning of a
line with #n# where n is the number of spaces, because the computation
process will often need to normalize multiple spaces, replacing them with
a single one. The right indentation will be restored in the L2 text;

3. the translation engine is now called, and the result, after the restoration
of the indentation, is written in the output textarea.

The function translate is, therefore, very simple:

15 〈call the translator 15〉≡ (33c)

function translate() {

var s = save_indent(

detranscribe_l1(

document.getElementById("t1").value));

var show_res = document.getElementById("t2");

show_res.value =

transcribe_l2(

restore_indent(

apply_grammar (

current_grammar,s)).replace(/\n\ /g,’\n’));

}

Defines:
translate(), used in chunk 10.

Uses current grammar 13b, detranscribe l1 17b, restore indent 17b, save indent 17b,
and transcribe l2 17b.

July 25, 2010 nsm-dalia-1-0.nw 16

The two utility functions save indent and restore indent are as follows:

16 〈utils 16〉≡ (33c) 17a .

function save_indent(s) {

var spaces;

// replace each newline with ’;;’

s = s.replace(/\r?\n\r?/g,’;;’);

// replace punctuation, which could hang

// the RegExp engine

s = s.replace(/\?’/g,’INVQM ’);

s = s.replace(/\?/g,’ QM’);

s = s.replace(/\./g,’ FULLSTOP’);

// save spaces at the beinning of lines

while (spaces = s.match(/;;(\s\s+)/) ||

s.match(/^(\s\s+)/) ||

s.match(/[\)\]\.](\s\s+)/))

s = s.replace(spaces[1],

’ #’+spaces[1].length+’# ’) ;

return s;

}

function make_n_spaces (n) {

// given integer n, return a string

// containing n spaces

var spaces = ’’;

for (i=0; i<n; i++) spaces += ’ ’;

return spaces

}

function restore_indent(s) {

// restorer punctuation

s = s.replace(/INVQM /g,’?\’’);

s = s.replace(/ QM/g,’?’);

s = s.replace(/ FULLSTOP/g, ’.’);

// restore newlines

s = s.replace(/;;/g, ’\n’);

//restore spaces

var spaces;

while (spaces = s.match(/ #(\d+)# /))

s = s.replace(

spaces[0],

July 25, 2010 nsm-dalia-1-0.nw 17

make_n_spaces(

parseFloat(spaces[1]))) ;

return s;

}

Uses restore indent 17b and save indent 17b.

The following routine transcribes the output text using the transcription table
for L2. This is needed when the grammar does not use directly the orthography
of the language.

17a 〈utils 16〉+≡ (33c) / 16 17b .

function transcribe_l2(s) {

for (var i=0; i < l2_transcr.length; i++)

s = s.replace(l2_transcr[i][0], l2_transcr[i][1]);

return s;

}

Uses transcribe l2 17b.

A parallel routine isused to “detranscribe” L1 input:

17b 〈utils 16〉+≡ (33c) / 17a 18 .

function detranscribe_l1(s) {

var t = document.getElementById("toggle_l1_tr");

if (!t.checked)

for (var i=0; i < l1_transcr.length; i++)

s = s.replace(l1_transcr[i][0], l1_transcr[i][1]);

return s;

}

Defines:
detranscribe l1, used in chunk 15.
restore indent, used in chunks 15 and 16.
save indent, used in chunks 15 and 16.
transcribe l2, used in chunks 15 and 17a.

July 25, 2010 nsm-dalia-1-0.nw 18

The last utility functions show and hide the transcription table.

18 〈utils 16〉+≡ (33c) / 17b 27a .

function show_l1_transcr() {

if (current_l1 == ’xxx’)

alert(’Please select a grammar first’);

else {

var t_slot = document.getElementById("transcr_slot");

// get transcription array

var t = eval(current_l1 + ’_transcr’);

if ((!t) || (t.length==0)) {

t_slot.innerHTML = ’ \

Transcription table empty for language ’ +

current_l1 + ’.’

}

else {

// build table

var r1 =’<tr><td>Transcription:</td>’;

var r2 =’<tr><td>Character:</td>’;

for (var i=0; i < t.length; i++) {

r1 += ’<td>’ + t[i][0] + ’</td>’;

r2 += ’<td>’ + t[i][1] + ’</td>’;

}

r1 += ’</tr>’; r2 += ’</tr>’;

// show table

t_slot.innerHTML = ’<table border="1">’ +

r2 + ’\n’ + r1 + ’</table>’;

}

t_slot.innerHTML +=

’
(\

Hide)’;

}

}

function close_transcr_table () {

var t_slot = document.getElementById("transcr_slot");

t_slot.innerHTML = ’’;

}

Uses current l1 13b.

July 25, 2010 nsm-dalia-1-0.nw 19

3.3 The Grammar Builder

The grammar used by the translation engine consists of the four separate pieces
assembled together:

• the L1 morphology component;

• the L1 to L2 translation grammar;

• the “end of grammar” regex, which strips the syntactic markers from the
generated string, and

• the L2 morphology, wihch “spells out” the output of the L1-to-L2 gram-
mar.

The grammar build function assembles the three pieces which constitute a
grammar. Its parameter is the name of the variable which contains the main
piece of the grammar. The name has the form l1code l2code. For example, a
Spanish-to English grammar is an array of rules; the name of the array is spa eng.
The other pieces needed to assemble the grammar are the morphologies of L1
and L2; whose names have the form l1code morph and l2code morph.

So, the grammar build function must first of all retrieve the codes of L1 and
L2 from the parameter grammar name:

19 〈get the language codes 19〉≡ (20)

var codes = grammar_name.split(’_’);

var l1_code = codes[0];

var l2_code = codes[1];

July 25, 2010 nsm-dalia-1-0.nw 20

Then, the empty array grammar is prepared which will contain the assembled
grammar. This grammar will then be compiled.

To assemble the grammar, we first perform a check using the two functions
installed direct and installed inverse. We must do this in order to allow
for the possibility for a grammar to be used for backward translation from L2
to L1. If, for example, we want to translate from Spanish NSM to English
NSM, and we have installed the grammar spa eng, we will then mount a direct

grammar; if we want to translate from English to Spanish we will mount an
inverse one.

The last line of the function calls the routine which will compile the grammar.
Here is the code:

20 〈build grammar 20〉≡ (33c)

function build_grammar(grammar_name) {

〈get the language codes 19〉
var grammar = new Array();

if (installed_direct(grammar_name))

// build a direct grammar

grammar = grammar.concat(

eval(l1_code + ’_morph’),

eval(grammar_name+’_gr’),

end_of_grammar,

invert_morph(eval(l2_code + ’_morph’)));

else if (installed_inverse(grammar_name))

//build an inverse grammar

grammar = grammar.concat(

eval(l1_code + ’_morph’),

build_l2_l1(eval(l2_code+’_’+l1_code +’_gr’)),

end_of_grammar,

invert_morph(eval(l2_code + ’_morph’)));

if (grammar) compile_grammar(grammar)

}

Defines:
build grammar, used in chunk 32.

Uses build l2 l1 23, compile grammar 24a, end of grammar 21a, installed direct 21c,
installed inverse 21c, and invert morph 22.

July 25, 2010 nsm-dalia-1-0.nw 21

The global string end of grammar which is concatenated before the L2 mor-
phology grammar is a regex which strips all the “phrase” markers from the
output of the translation component2:

21a 〈end of grammar regex 21a〉≡ (13b)

var end_of_grammar = [

[’<[^*]**’,’’],

[’*>’,’’]

];

Defines:
end of grammar, used in chunk 20.

The functions which check whether the grammar must be built in its direct or
in its inverse form only have to consult the global variables direct grammars

and inverse grammars:
As for version 1.0, which comes with a Spanish-English grammar, these

variables are simply:

21b 〈direct and inverse grammar list 21b〉≡ (13a)

var direct_grammars = ’:spaCO_eng:’;

var inverse_grammars = ’:eng_spaCO:’;

Defines:
direct grammars, used in chunk 21c.
inverse grammars, used in chunk 21c.

And here are the functions which consult the global variables:

21c 〈check installed 21c〉≡ (33c)

function installed_direct(g_name) {

return (direct_grammars.indexOf(’:’ + g_name +’:’) != -1)

}

function installed_inverse(g_name) {

return (inverse_grammars.indexOf(’:’ + g_name +’:’) != -1)

}

Defines:
installed direct, used in chunks 20 and 32.
installed inverse, used in chunks 20 and 32.

Uses direct grammars 21b and inverse grammars 21b.

2Phrase markers have the form < PhraseName ∗ ...∗ >.

July 25, 2010 nsm-dalia-1-0.nw 22

The morphology grammars are written for parsing; so an example of an English
morphology rule could be:

["does", "3 do"],

["has", "3 have"],

["is", "3 be"],

that is: replace, in the input text, does with 3 do, has with 3 have, is with
3 be and a string which consists of a STEM + s with 3 STEM.

A direct grammar, therefore, will need the L1 morhpology in direct form,
and the L2 morphology in inverse form. An inverse grammar will need the L1
morphology to be inverted, as also the main grammar. From this comes the
need to distinguish direct and inverse grammars.

The segment of English morphology shown above, when inverted, becomes:

["3 be", "is"],

["3 do", "does"],

["3 have", "has"],

["3 be", "is"],

If we are generating English text from Spanish, the output of the Spanish-
to-English grammar will contain strings like 3 be, which must be converted into
is.

The function which inverts a morphology grammar simply exchanges the
“match” part with the “replace” part of each rule; furthermore, it builds the
inverted grammar from the bottom up:

22 〈invert morphology 22〉≡ (33c)

function invert_morph(g) {

var new_g = new Array();

for (var i = g.length-1; i >= 0; i--) {

var new_rule = new Array(2);

new_rule[0]=g[i][1];

new_rule[1]=g[i][0];

if (g[i][2]) new_rule.push(g[i][2]);

new_g.push(new_rule);

}

return new_g;

}

Defines:
invert morph, used in chunk 20.

July 25, 2010 nsm-dalia-1-0.nw 23

The function which inverts an L1-to-L2 grammar into an L2-to-L1 grammar is
very similar; it only exchanges the “match” part with the “replace” part, but it
does not alter the order of the rules:

23 〈invert syntax 23〉≡ (33c)

function build_l2_l1(g) {

var new_g = new Array();

for (var i = 0; i < g.length; i++) {

var new_rule = new Array(2);

new_rule[0]=g[i][1];

new_rule[1]=g[i][0];

if (g[i][2]) new_rule.push(g[i][2]);

new_g.push(new_rule);

}

return new_g;

}

Defines:
build l2 l1, used in chunk 20.

July 25, 2010 nsm-dalia-1-0.nw 24

3.4 The Grammar Compiler

Once the grammar has been assembled, it is scanned by the function compile
grammar. “Compiling” a grammar means simply replace a rule which uses
variables with a list of rules without variables, in which the variables have been
instantiated with their values. As for version 1.0, this is a very long process;
this issue will have to be addressed in later versions.

24a 〈compile grammar 24a〉≡ (33c)

function compile_grammar(grammar) {

// notify lengthy compilation

var notify = document.getElementById("notify_slot");

notify.innerHTML =

’Compiling grammar. Please wait...’;

alert(’Grammar must be compiled. This will take a little time.\n\

Please click the \"OK\" button to start compiling.’);

// compile

for (var i = 0; i < grammar.length; i++) {

var rule = new Array(2);

rule[0] = grammar[i][0];

rule[1] = grammar[i][1];

if (grammar[i][2] && (grammar[i][2].length > 0)) {

var vars = grammar[i][2].split(/\s*\;\s*/);

add_rules_with_vars(current_grammar,rule,vars);

}

else { add_rule(current_grammar,rule); }

}

// notify end of compilation

var notify = document.getElementById("notify_slot");

notify.innerHTML =

’Grammar compiled successfully’;

}

Defines:
compile grammar, used in chunk 20.

Uses add rule 25, add rules with vars 28a 28b 29a 29b 29c 30a 30b,
and current grammar 13b.

The compile function distinguishes whether a rule has variables or not. If a
rule does not have variables (i.e. grammar[i][2] for rulej is undefined), the
rule is simply added to the compiled grammar. If the rule has variables, the
add rule with vars(current grammar,rule,vars) routine is invoked.

24b 〈add rules to grammar 24b〉≡ (33c)

〈add compiled rule 25〉
〈compile rules with variables 28a〉

July 25, 2010 nsm-dalia-1-0.nw 25

Compiling a rule without variables Before a rule without variables is
added to the gramamr array, a slight modification is still to be done. The
grammar writer can indicate a phrase with Phrase Name. To indicat that a
noun phrase should occur in a position, the grammar writer can simply say
(*NP*) in that position. This construct is turned into a regex which matches
the text between the markers <*Phrase Name and *>. So, for example, (*NP*)
is turned into <NP*\s*([^*]*)*> when the gramamr is compiled.

25 〈add compiled rule 25〉≡ (24b)

// adds a compiled rule to the grammar

function add_rule(grammar,rule) {

var syntagma;

var j=1;

/* checks for (*SyntName*), to be replaced by a regex

which matches the whole syntagma */

while (syntagma = rule[0].match(/\(*([^*]+)*\)/)) {

var synt_rg = ’<’ + syntagma[1] +

’*\\s*([^*]*)*>’;

rule[0] = rule[0].replace(

’(*’+syntagma[1]+’*)’, synt_rg);

rule[1] = rule[1].replace(

’(*’+syntagma[1]+’*)’, ’$’ + j++);

} //$

rule[1] = add_phrase_marker(rule[1]);

rule[0] = rule[0].replace(/^<*[^*]**>\s*/,’’);

rule[0] = rule[0].replace(/#/g,’\\b’);

rule[1] = rule[1].replace(/#/g,’’);

rule[0] = new RegExp(rule[0],"g");

grammar.push(rule);

}

Defines:
add rule, used in chunks 24a and 28a.

Uses add phrase marker 26.

July 25, 2010 nsm-dalia-1-0.nw 26

On the contrary, if the grammar writer wants to give a name to a certain pattern,
considering it to be a phrase, he puts <*Phrase*> at the beginning of the match
and replace parts. For example, one of the rules which recognizes a substantive
phrase in English and Spanish is:

["<*N*> DETN1 INT1 AP1",

"<*N*> DETN2 INT2 AP2",

"DETN=algo|something,alguien|someone;

INT=muy|very, 0|0;

AP=grande|big, pequen’o|small, bueno|good, malo|bad,

otro|else, 0|0"],

the function add phrase marker, called by the previous function, would trans-
form the previous replace pattern into <N* DETN2 INT2 AP2 *>, while the match
part becomes simply DETN1 INT1 AP1.

26 〈add phrase marker 26〉≡ (33c)

function add_phrase_marker(s) {

var group = s.match(/^<*([^*]*)*>\s+/);

if (group)

s = ’<’ + group[1] + ’* ’

+ s.replace(’<*’ + group[1]

+ ’*>’,’’) + ’ *>’;

return s;

}

Defines:
add phrase marker, used in chunk 25.

July 25, 2010 nsm-dalia-1-0.nw 27

3.5 Compiling a rule with variables

The compiler for rules with variables is the longest routine in the program. It
uses two utility function: a non distructive version of the array method shift,
which I have called cdr, as the corresponding LISP command. Function cdr

receives an array as a parameter and returns a new array which is equal to
the original array without the first element, but it does not modify the original
array:

27a 〈utils 16〉+≡ (33c) / 18 27b .

// non-destructive version of shift

function cdr(ar) {

if (ar.length == 0) return [];

else {

var new_ar = [];

for (var i = 1; i < ar.length; i++)

new_ar.push(ar[i]);

return new_ar;

}

}

Defines:
cdr, used in chunk 29.

The second utility function replaces all multiple spaces with a single one, and
trims the leading and trailing spaces:

27b 〈utils 16〉+≡ (33c) / 27a

function normalize_spaces(s) {

s = s.replace(/\s\s+/g,’ ’);

s = s.replace(/^\s/,’’);

s = s.replace(/\s$/,’’);

return s;

} //$

Defines:
normalize spaces, used in chunks 14 and 30b.

July 25, 2010 nsm-dalia-1-0.nw 28

First of all, if the rule has no variables, we have reached the end of the recursion,
and we pass the rule to the add rule routine. Otherwile, we need to compile
variables:

28a 〈compile rules with variables 28a〉≡ (24b)

function add_rules_with_vars(grammar,rule,vars) {

if (vars.length == 0) // no variables

add_rule(grammar,rule)

else {

〈compile variables 28b〉
}

}

Defines:
add rules with vars, used in chunk 24a.

Uses add rule 25.

There are two typs of variables: those who begin with a “$” followed by a digit
signal that the user is using the content of variables as a regex. Every other
name will indicate a string variable.

First of all, the first element of the vars array, vars[0], is accessed. It
contains the first variable group3. of the list of variable groups. The variable
group is then split into name and content.

Then, if the variable is of the regex type, we compile a regex; if not, we
compile a string variable.

28b 〈compile variables 28b〉≡ (28a)

// get the list of variables as a string

var variable_string = vars[0];

// split the string into an array

// whose entries are VarName = VarContent

var variable = variable_string.split(/\s*\=\s*/);

if (variable[0].charAt(0) == ’$’) {

〈compile a regex variable 29a〉
}

else if (variable[1] && variable[1].length>0) {

〈compile a string varable 29b〉
} //$

Defines:
add rules with vars, used in chunk 24a.

3With “variable group”” I mean string of the form variable name = list of values.

July 25, 2010 nsm-dalia-1-0.nw 29

29a 〈compile a regex variable 29a〉≡ (28b)

// variables whose name are

// ’$+number’ indicate a regex

rule[0] = rule[0].replace(variable[0],

’(’ + variable[1] + ’)’);

add_rules_with_vars(

grammar,rule,cdr(vars)); //$

Defines:
add rules with vars, used in chunk 24a.

Uses cdr 27a.

To compile a string variable, we first get an array of the possible values of the
variable (obtained by splitting the content string at each comma). The first
element in the variables array, vars, which contains the variable group which
we are compiling now, has now been used, so we pop it4:

29b 〈compile a string varable 29b〉≡ (28b) 30b .

var variable_content = variable[1].split(/\s*\,\s*/);

var new_vars = cdr(vars); //pop vars[0]

Defines:
add rules with vars, used in chunk 24a.

Uses cdr 27a.

Then, for each item in the content array, we substitute each instance of the name
of the variable in the “match” and “replace” parts of the rule with that item, and
call the function recursively to compile the other variables. But a preliminary
check has to be made for complex variables (those which have different but
corresponding values separated by a |’ character).

For simple use of variables, replacing the variable name with the content
item is simply:

29c 〈add simple content 29c〉≡ (30b)

var variable_name = new RegExp(variable[0], "g");

new_rule[0] =

rule[0].replace(variable_name, variable_content[j]);

new_rule[1] =

rule[1].replace(variable_name, variable_content[j]);

Defines:
add rules with vars, used in chunk 24a.

4It is important not to use the JavaScript shift function, because it modifies the original
array, which would be altered at each recursion.

July 25, 2010 nsm-dalia-1-0.nw 30

For complex variables, the variable name is followed by a numerical index in
the “match” and “replace” part of the rule; this index specifies which of the
alternatives must be consideres a possible value for the variable.

variables with alternative values: v=a|b|c means v1=a, v2=b, v3=c.

30a 〈add alternative contents 30a〉≡ (30b)

var alternatives =

variable_content[j].split(/\s*\|\s*/);

new_rule[0] = rule[0];

new_rule[1] = rule[1];

for (var k=0; k < alternatives.length; k++) {

var variable_name = new RegExp(

variable[0] + (k+1), "g");

new_rule[0] =

new_rule[0].replace(

variable_name, alternatives[k]);

new_rule[1] =

new_rule[1].replace(

variable_name, alternatives[k]);

}

Defines:
add rules with vars, used in chunk 24a.

So here is the code for the string variable compilation. A for cycle iterates
through the items of content. For each iteraton, the content item is substituted
for the variable name in one of the two possible ways.

30b 〈compile a string varable 29b〉+≡ (28b) / 29b

for (var j = 0; j < variable_content.length; j++) {

var new_rule = new Array(2);

// variables with alternative values

if (variable_content[j].indexOf(’|’) != -1) {

〈add alternative contents 30a〉
}

else { // no alternative values

〈add simple content 29c〉
}

// optional variables and normalize spaces

new_rule[0] = new_rule[0].replace(/0/g, ’’);

new_rule[1] = new_rule[1].replace(/0/g, ’’);

new_rule[0] = normalize_spaces(new_rule[0]);

new_rule[1] = normalize_spaces(new_rule[1]);

// recursion

add_rules_with_vars(grammar,new_rule,new_vars);

}

Defines:
add rules with vars, used in chunk 24a.

Uses normalize spaces 27b.

July 25, 2010 nsm-dalia-1-0.nw 31

3.6 Building complex grammars

In order to translate, for example, from Spanish to French, if we have the
two grammars spa eng and fra eng: we build a complex grammar Spanish →
English → French.

31a 〈build complex grammars 31a〉≡ (33c)

〈build path 33b〉
〈build grammars 31b〉

The function build grammars is the motor of the grammar compilation process.
It is invoked each time the user selects a new language from one of the two select
lists. The routine first assign the new language chosen to the global grammars
current l1 or current l2:

31b 〈build grammars 31b〉≡ (31a) 32 .

function build_grammars(code,l1_or_l2) {

current_grammar = [];

if (l1_or_l2 == ’1’)

current_l1 = code;

else

current_l2 = code;

Defines:
build grammars, used in chunk 11.

Uses current grammar 13b, current l1 13b, and current l2 13b.

July 25, 2010 nsm-dalia-1-0.nw 32

Then, if there is a choice for both L1 and L25, the global array current grammar,
which could contain a previously used grammar, is emptied. Then a check is
performed: if there is a direct grammar (L1 L2) or an inverse one (L2 L1) for the
language combination chosen, the build grammar routine is invoked. Otherwise,
a complex grammar must be built, by concatenating L1 eng and eng L2. This
is done by the build path function.

32 〈build grammars 31b〉+≡ (31a) / 31b

if ((current_l1 != ’xxx’) &&

(current_l2 != ’xxx’) &&

(current_l1 != current_l2)) {

current_grammar = [];

if (installed_direct(current_l1+’_’+current_l2) ||

installed_inverse(current_l1+’_’+current_l2))

build_grammar(current_l1 + ’_’ + current_l2)

else {

var path = build_path(current_l1,current_l2);

for (var i=0; i<path.length; i++)

build_grammar(path[i]);

}

build_transcr(current_l1,current_l2);

}

}

function build_transcr(l1,l2) {

var t1 = eval(l1 + ’_transcr’);

var t2 = eval(l2 + ’_transcr’);

l1_transcr = [];

l2_transcr = [];

for (var i=0; i < t1.length; i++) {

l1_transcr[i] = new Array(2);

l1_transcr[i][1] = t1[i][0];

l1_transcr[i][0] = new RegExp(t1[i][1],’g’);

}

for (var i=0; i < t2.length; i++) {

l2_transcr[i] = new Array(2);

l2_transcr[i][0] = new RegExp(t2[i][0],’g’);

l2_transcr[i][1] = t2[i][1];

}

}

Defines:
build grammars, used in chunk 11.
build transcr, never used.

Uses build grammar 20, build path 33b, current grammar 13b, current l1 13b,
current l2 13b, installed direct 21c, and installed inverse 21c.

5When only one is selected, the other has the dummy value ’xxx’.

July 25, 2010 nsm-dalia-1-0.nw 33

The build path routine checks whether one of the two languages is English. If
so, the path from L1 to L2 is already contained in one of the global variables
paths from eng or paths to eng.

33a 〈paths 33a〉≡ (13a)

var paths_to_eng = {spaCO : [’spaCO_eng’]};

var paths_from_eng = {spaCO : [’eng_spaCO’]};

If not, a new path is built by concatenating the path from L1 to eng with the
path from eng to L2.

33b 〈build path 33b〉≡ (31a)

function build_path(l1,l2) {

if (l1 == ’eng’)

return paths_from_eng[l2];

else if (l2 == ’eng’)

return paths_to_eng[l1]

else {

var newpath = paths_to_eng[l1];

newpath = newpath.concat(

paths_from_eng[l2]);

return newpath;

}

}

Defines:
build path, used in chunk 32.

3.7 The Whole Program

The chunks thus defined assemble to form the whole program:

33c 〈nsm-dalia-1-0.js 33c〉≡

〈global variables 13b〉

〈translate a text 14〉
〈call the translator 15〉

〈utils 16〉

〈add phrase marker 26〉
〈add rules to grammar 24b〉
〈check installed 21c〉
〈invert morphology 22〉
〈invert syntax 23〉
〈compile grammar 24a〉
〈build grammar 20〉
〈build complex grammars 31a〉

July 25, 2010 nsm-dalia-1-0.nw 34

Defined Chunks

〈add alternative contents 30a〉 30a, 30b
〈add compiled rule 25〉 24b, 25
〈add phrase marker 26〉 26, 33c
〈add rules to grammar 24b〉 24b, 33c
〈add simple content 29c〉 29c, 30b
〈body 12〉 6, 12
〈build complex grammars 31a〉 31a, 33c
〈build grammar 20〉 20, 33c
〈build grammars 31b〉 31a, 31b, 32
〈build path 33b〉 31a, 33b
〈call the translator 15〉 15, 33c
〈check installed 21c〉 21c, 33c
〈compile a regex variable 29a〉 28b, 29a
〈compile a string varable 29b〉 28b, 29b, 30b
〈compile grammar 24a〉 24a, 33c
〈compile rules with variables 28a〉 24b, 28a
〈compile variables 28b〉 28a, 28b
〈direct and inverse grammar list 21b〉 13a, 21b
〈end of grammar regex 21a〉 13b, 21a
〈get the language codes 19〉 19, 20
〈global variables 13b〉 13b, 33c
〈head 7a〉 6, 7a
〈initialization script 7b〉 7a, 7b, 8b, 8c, 9a
〈installed languages 8a〉 8a, 13a
〈invert morphology 22〉 22, 33c
〈invert syntax 23〉 23, 33c
〈nsm-dalia-1-0.html 6〉 6
〈nsm-dalia-1-0.js 33c〉 33c
〈nsm-dalia-installed.js 13a〉 13a
〈paths 33a〉 13a, 33a
〈select languages 11〉 11, 12
〈textareas 9b〉 9b, 12
〈translate a text 14〉 14, 33c
〈translate button 10〉 10, 12
〈utils 16〉 16, 17a, 17b, 18, 27a, 27b, 33c

July 25, 2010 nsm-dalia-1-0.nw 35

Index

add phrase marker: 25, 26
add rule: 24a, 25, 28a
add rules with vars: 24a, 28a, 28b, 29a, 29b, 29c, 30a, 30b
apply grammar(grammar,s): 14
build grammar: 20, 32
build grammars: 11, 31b, 32
build l2 l1: 20, 23
build path: 32, 33b
build transcr: 32
cdr: 27a, 29a, 29b
compile grammar: 20, 24a
current grammar: 13b, 15, 24a, 31b, 32
current l1: 13b, 18, 31b, 32
current l2: 13b, 31b, 32
detranscribe l1: 15, 17b
direct grammars: 21b, 21c
end of grammar: 20, 21a
init select list: 8b, 8c
init select lists: 8c, 12
installed direct: 20, 21c, 32
installed inverse: 20, 21c, 32
installed lang: 8a, 8b
inverse grammars: 21b, 21c
invert morph: 20, 22
newOption: 7b, 8b
normalize spaces: 14, 27b, 30b
restore indent: 15, 16, 17b
save indent: 15, 16, 17b
transcribe l2: 15, 17a, 17b
translate(): 10, 15

